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• QCANE model accurately simulated 
sugarcane yield in the study region.

• Climate change was projected to in
crease sugarcane yield in the study 
region.

• Annual harvest frequency increased to 
68–96 % in the future due to climate 
warming.

• Increased yields were mainly driven by 
rising temperature and CO2 
concentration.
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A B S T R A C T

CONTEXT: Australia is a leading exporter of raw sugar on the global market. Rising temperatures could enable 
sugarcane to achieve harvestable yields in a 1-year growth cycle instead of the traditional 2-year cycle in the 
subtropical regions of northern New South Wales (NSW). However, no study has evaluated how climate change 
impacts annual harvest frequency, leaving a critical gap in understanding sugarcane production’s future in 
Australia.
OBJECTIVE: We aim to quantify the impacts of climate change on sugarcane yield and annual harvest frequency 
and identify the main climatic drivers that determine yield change.
METHODS: We used sugarcane yield data collected from three milling regions, Condong, Broadwater, and 
Harwood, to validate the QCANE sugarcane model in northern coastal NSW. The validated model was then 
driven by climate data downscaled from 27 global climate models under the Coupled Model Intercomparison 
Project Phase 6 to simulate sugarcane growth and sugar accumulations.
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RESULTS AND CONCLUSIONS: The QCANE model showed strong agreement between simulated and observed 
values, with an R2 of 0.83 for stalk fresh weight (FW) and 0.80 for sucrose weight (SW), and nRMSE values of 9.4 
% for FW and 10.0 % for SW. Under rising emissions (SSP126 to SSP585), yield projections indicated increases by 
the end of the 21st century, with FW rising by 6–34 Mg ha− 1 (i.e., 6–29 %), biomass dry weight (DW) by 2–11 
Mg ha− 1 (6–29 %), and SW by 1–7 Mg ha− 1 (10–46 %) across the three study sites. Additionally, the annual 
harvest frequency was expected to increase from 50 to 80 % during the baseline period (1981–2020) to 68–96 %, 
with a greater proportion of future years supporting frequent annual harvests. Climate variables accounted for 
93–96 % of the yield variation, with elevated atmospheric CO2 concentration as the dominant contributor to 
yield increases.
SIGNIFICANCE: These findings highlight opportunities to enhance sugarcane production by adopting a 1-year 
harvest cycle under future climate conditions, providing valuable insights for the sugarcane industry to adapt 
and thrive in the face of climate change.

1. Introduction

Sugarcane (Saccharum spp.) is a crucial crop for global food and 
energy production (Dias and Inman-Bamber, 2020; Jackson et al., 
2014). It is cultivated year-round in tropical and subtropical regions 
across more than 100 countries, spanning 27.55 million hectares glob
ally (FAOSTAT, 2023; Sanches et al., 2023). However, sugarcane pro
ductivity is highly sensitive to climate variations, including 
temperature, CO2 concentrations [CO2], and rainfall, which influences 
yield and growth cycles (Shanthi et al., 2023; Yao et al., 2025; Zhao and 
Li, 2015). Accurately assessing the impact of climate change on sugar
cane is essential for developing resilient and adaptive strategies to 
maximize yields.

Australia is a major global exporter of raw sugar and sugar by- 
products, ranking as the fourth-largest exporter of raw sugar after 
Brazil, Thailand, and India (USDA, 2022). Sugarcane in Australia is 
mainly cultivated along the eastern coastline, spanning approximately 
2100 km from the tropical regions of Queensland to the subtropical 
areas of northern New South Wales (NSW) (USDA, 2023; Wei et al., 
2022). Temperature is a dominant factor influencing sugarcane yield 
and the growth cycle in these regions (Muchow et al., 1999; Park et al., 
2008). In the tropical north, favorable warm conditions support annual 
sugarcane harvesting, whereas in subtropical NSW, lower autumn and 
spring temperatures restrict sugarcane growth, extending the crop cycle 
to two years (SRA, 2024; SunshineSugar, 2022). Climate models have 
predicted that temperatures in the sugarcane-growing regions in 
northern coastal NSW are likely to rise by approximately 1.7 ◦C in the 
near-future (by 2059) and by about 3.4 ◦C in the far-future (by 2099) 
under high emissions (SSP3–7.0) (AdaptNSW, 2024b). If these warming 
trends occur, sugarcane growers may be able to achieve harvestable 
yields within a 1-year growth cycle instead of the traditional 2-year 
cycle. However, despite the potential benefits of warmer conditions, 
future rainfall is projected to decline by 3 %–11.5 % from 2059 to 2099 
(AdaptNSW, 2024b), which may pose challenges for maintaining yield 
increases. Given these uncertainties in temperature-driven growth ac
celeration and potential water limitations, no study has yet assessed the 
impact of climate change on annual harvest frequency in NSW. This 
highlights a critical gap in understanding the future of sugarcane pro
duction in the region.

Process-based sugarcane growth models simulate underlying bio
physical processes, offering reliable predictions of sugarcane growth, 
yield, and resource use efficiency under varying environmental and 
management conditions (Junior et al., 2022; Marin and Jones, 2014). 
Prominent models include the South African CANEGRO model (Inman- 
Bamber, 1991; Inman-Bamber et al., 1993), the Brazilian SAMUCA 
model (dos Santos Vianna et al., 2020; Marin et al., 2017; Marin and 
Jones, 2014), and the Australian models QCANE (Liu and Bull, 2001) 
and APSIM-Sugarcane (Keating et al., 1999; Wegener et al., 1988). 
These models were used to simulate sugarcane growth and production 
under different climatic scenarios. For instance, Singels et al. (2014)
applied the CANEGRO model to project the impact of increases in [CO2] 

and temperature on sugarcane yield at a global scale. Their result 
indicated that stalk fresh weight (FW) was expected to increase in Brazil 
and South Africa, with approximately half of the yield changes attrib
uted to the fertilization effect of elevated [CO2]. Using the SAMUCA 
model, dos Santos Vianna et al. (2020) simulated the effects of a green 
cane trash blanket (GCTB) on sugarcane growth and water use, 
demonstrating that GCTB can substantially increase yields in dry cli
mates and reduce water use across environments. In Southern China, Zu 
et al. (2018) applied the QCANE model to simulate potential yields and 
yield gaps of sugarcane, highlighting nitrogen stress as the dominant 
driver of the yield gap due to generally abundant precipitation in the 
region. In Australia, Park et al. (2008) employed the APSIM-Sugarcane 
model to project climate change impacts on sugarcane yield, suggest
ing that elevated temperature and [CO2], in combination with moderate 
to high rainfall, could enhance sugarcane yield.

While these widely used models provide valuable frameworks for 
simulating sugarcane growth, they have notable limitations. For example, 
APSIM-Sugarcane provides a simple and computationally efficient 
framework by using radiation use efficiency to drive daily dry matter 
accumulation. However, it does not explicitly account for respiration 
(Marin et al., 2015), which becomes increasingly important in later 
growth stages as greater biomass leads to higher maintenance respiration 
losses and reduced growth (van Heerden et al., 2010). This limitation is 
particularly relevant under climate change scenarios, as respiration is 
highly sensitive to rising temperatures and may offset the potential ben
efits of enhanced growth conditions (Bonnett et al., 2006; Singels et al., 
2014). Similarly, CANEGRO converts intercepted photosynthetically 
active radiation into gross photosynthate using a conversion efficiency 
adjusted for water, temperature, and CO2 (Marin et al., 2015). However, 
sucrose accumulation in CANEGRO is empirically simulated based on 
physiological age, temperature, and water stress, without an explicit 
linkage to the carbon balance via direct carbon flow from assimilates 
(Jones et al., 2011; Marin et al., 2023; Singels et al., 2008). This simpli
fication limits the model’s capacity to represent the dynamic interactions 
among photosynthesis, respiration, and carbohydrate allocation. These 
processes become increasingly critical under climate change conditions, 
where elevated CO2, rising temperatures, and variable water availability 
interact to influence carbon assimilation and partitioning. In the SAMUCA 
model, it incorporates a detailed representation of soil-plant-atmosphere 
interactions and a CO2-responsive photosynthesis function, allowing for 
more flexible and realistic simulation of climate change impacts. It enables 
accurate simulation of sugarcane growth, particularly under green cane 
trash blanket conditions in both water-limited and irrigated systems 
across a range of climate scenarios (dos Santos Vianna et al., 2024; dos 
Santos Vianna et al., 2020; Marin and Jones, 2014). However, similar to 
CANEGRO, sucrose accumulation in SAMUCA is still primarily modeled as 
a function of air temperature and soil moisture (Marin and Jones, 2014), 
lacking a fully integrated carbon flow mechanism. In contrast, QCANE 
provides more comprehensive physiological representation by integrating 
canopy development, photosynthesis, respiration, and dynamic carbohy
drate partitioning among plant organs for growth and maintenance, all 

S. Yao et al.                                                                                                                                                                                                                                      Agricultural Systems 231 (2026) 104502 

2 



influenced by phenological development and environmental factors (Liu, 
1996; Liu and Bull, 2001; Liu and Helyar, 2003; Liu et al., 1998).

In this study, we used collected sugarcane yield data from three 
milling regions, Condong, Broadwater, and Harwood in NSW to validate 
the sugarcane model of QCANE. The validated model was driven by 
climate data downscaled from 27 global climate models (GCMs) under 
the Coupled Model Intercomparison Project Phase 6 to simulate sugar
cane yield under future climate in NSW. We aim to: (1) assess the po
tential impacts of CO2, temperature, rainfall, and global solar radiation 
on sugarcane yield, (2) explore the possibility of increasing annual 
harvest frequency under different future climate scenarios, and (3) 
quantify the contribution of climatic factors to yield change. We antic
ipate that the results will provide valuable insights for optimizing sug
arcane production and developing effective adaptation strategies to 
sustain sugarcane production in NSW under climate change.

2. Materials and methods

2.1. Study area

The sugarcane-growing region in NSW encompasses three key loca
tions (corresponding to three sugar mills), Condong, Harwood, and 
Broadwater, all of which were included in this study. These sites are 
located in northern coastal NSW (Fig. 1a), characterized by a typical 
subtropical climate with substantial rainfall in summer and drier con
ditions in winter (Liu et al., 2021). Among the three sites, Condong, the 
northernmost location, is the warmest and wettest, with an average 
annual temperature of 20.4 ◦C and annual rainfall of 1683 mm. Tem
perature and rainfall gradually decrease southward, with Broadwater 
and Harwood having a lower mean temperature of 19.9 ◦C. Broadwater 
receives 1627 mm of annual rainfall, while Harwood, the southernmost 
site, has the lowest annual rainfall at 1314 mm (Fig. 1b).

2.2. Climate data

Historical daily climate data (1981–2020), including maximum 
temperature, minimum temperature, rainfall, and global solar radiation, 
sourced from the SILO (Scientific Information for Land Owners) point 
climate dataset (Jeffrey et al., 2001) for the three geographically closest 
climate stations to the sites of Condong, Broadwater, and Harwood. 
Future climate projections for the same variables were derived from 27 
Global Climate Models (GCMs) (Table 1, https://esgf-node.llnl.gov/sear 
ch/cmip6/) from the Coupled Model Intercomparison Project Phase 6 

(CMIP6, https://pcmdi.llnl.gov/CMIP6/). Daily climate data for each 
location was statistically downscaled using the NWAI-WG (Liu and Zuo, 
2012). The downscaling process involved two steps: spatial and tem
poral downscaling. First, monthly GCM projections were interpolated to 
site using inverse distance weighting, followed by bias correction via 
quantile mapping to align with observed data (Zhang, 2005; Zhang, 
2007). Second, the bias-corrected monthly data were disaggregated into 
daily values using the modified WGEN weather generator (Richardson 
and Wright, 1984). These projected climate data have been widely used 
in numerous climate impact studies (Guga et al., 2023; Wang et al., 
2022; Zhu et al., 2024).

CMIP6 integrates the scientific combination scenarios of shared so
cioeconomic paths (SSPs), and representative concentrated paths (RCPs) 
into the impact of socio-economic development, providing a range of 

Fig. 1. (a) Geographic location of Condong, Broadwater, and Harwood in northern coastal NSW. (b) Long-term average annual climate during the baseline period 
(1981–2020), including minimum temperature (Tmin), maximum temperature (Tmax), total annual rainfall, and global solar radiation.

Table 1 
List of 27 global climate models (GCMs) used for climate projections in the 
study.

Model ID Name of GCM Institute ID Country

01 ACCESS-CM2 BoM Australia
02 ACCESS-ESM1–5 BoM Australia
03 BCC-CSM2-MR BCC China
04 CIESM THU China
05 CMCC-CM2-SR5 CMCC Italy
06 CNRM-CM CNRM France
07 CNRM-CM6–1-HR CNRM France
08 CNRM-ESM CNRM France
09 CanESM5 CCCMA Canada
10 CanESM5-CanOE CCCMA Canada
11 EC-Earth3 EC-EARTH Europe
12 EC-Earth3-Veg EC-EARTH Europe
13 FGOALS-g3 FGOALS China
14 GFDL-ESM4 NOAA GFDL USA
15 GFDL-CM4 NOAA GFDL USA
16 GISS-E2–1-G NASA GISS USA
17 HadGEM3-GC31LL MOHC UK
18 INM-CM4–8 INM Russia
19 INM-CM5–0 INM Russia
20 IPSL-CM IPSL France
21 MIROC-ES2L MIROC Japan
22 MIROC6 MIROC Japan
23 MPI-ESM1–2-HR MPI-M Germany
24 MPI-ESM1–2-LR MPI-M Germany
25 MRI-ESM2–0 MRI Japan
26 NESM3 NUIST China
27 UKESM1–0-LL Met Office UK
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distinct end-of-century climate change outcomes (Database, S, 2018). In 
this study, we used four representative SSPs to cover a range from low to 
high emissions: the “sustainability” scenario (SSP1–2.6), the “middle of 
the road” scenario (SSP2–4.5), the “regional rivalry” scenario 
(SSP3–7.0), and the “fossil-fueled development” scenario (SSP5–8.5) 
(IPCC, 2021). By the end of the 21st century, SSP1–2.6 (hereafter 
SSP126) is projected to have a CO2 concentration of approximately 450 
ppm. SSP2–4.5 (SSP245) is expected to increase to around 560 ppm, 
SSP3–7.0 (SSP370) to about 810 ppm, and SSP5–8.5 (SSP585) to 
approximately 1100 ppm, assuming no mitigation measures are imple
mented (IPCC, 2021).

This study evaluated the impacts of changing climate on sugarcane 
production during the two future periods of the 2040s (2021–2060) and 
2080s (2061–2100), relative to the baseline period (1981–2020). Yearly 
atmospheric [CO2] (ppm) from 1981 to 2100 was calculated and inte
grated into the QCANE simulation using empirical equations derived 
through non-linear least-squares regression (Liu et al., 2017). These 
equations were based on the concentration pathways provided by the 
Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 
(O’Neill et al., 2016), and are presented as follows: 

[CO2]SSP126 =113.08 −
34.344 − 0.010402y

0.15585 − 0.043727y0.28905 +4.5948(y − 1961)

− 0.023987(y − 1977)2
− 2.4959×10− 4(y − 2054)3

− 6.5721×10− 7(y − 2054)4

(1) 

[CO2]SSP245 =62.044+
34.002 − 3.8702y

0.24423 − 1.1542y2.4901 +0.028057(y − 1900)2

+0.00026827(y − 1960)3
− 9.2751×10− 7(y − 1910)4

− 2.2448(y − 2030)
(2) 

[CO2]SSP370 =151.9+
20.092+10.315y

5.8491+2.4884y2.268+4.752×10− 5(y − 143.55)2

+1.037×10− 4(y − 1908)3
− 5.9113×10− 8(y − 1849)4

(3) 

[CO2]SSP585 =757.44+
84.938 − 1.537y

2.2011 − 3.8289y− 0.45242+2.4712×10− 4(y+15)2

+1.9299×10− 5(y − 1937)3
+5.1137×10− 7(y − 1910)4

(4) 

where the variable y represents the calendar year spanning from 1981 to 
2100. In Eq. (4), the term “y + 15” reflects a curve-fitting adjustment 
introduced during non-linear least-squares regression of the SSP585 CO2 
concentration pathway.

2.3. Model description and simulations

2.3.1. The QCANE model
QCANE is a process-based sugarcane growth model developed by Liu 

and Bull (2001). In QCANE, daily gross photosynthesis is determined by 
diurnal light variation and light attenuation (Liu, 1996), influenced by 
factors such as leaf nitrogen and temperature. By employing a detailed 
process-based approach (Liu and Bull, 2001; Liu and Kingston, 1995), 
QCANE directly links CO2 concentration to the photosynthesis function, 
enhancing its flexibility in simulating the effects of climate change on 
photoassimilates. In QCANE, physiological and biochemical processes in 
sugarcane growth and development are integrated using a source-sink 
approach. A key feature of this model is the central role of sucrose, 
which serves as a carbon pool to supply daily structural-C and 
maintenance-C requirements (Liu and Bull, 2001).

The effect of CO2 on photosynthesis is modeled by modification of 
the method proposed by Reyenga et al. (1999), which incorporated the 

interaction between CO2 concentration and temperature: 

f =
(Ce − Γ)(350 + 2Γ)
(Ce + 2Γ)(350 − Γ)

(5) 

where Γ = 25+
34t2

350 + t2 (6) 

In Eq. (5), f is the photosynthetic enhancement factor, representing 
the relative change in photosynthesis under elevated CO2 concentrate 
(Ce) and temperature (t), rather than the absolute photosynthesis rate. 
The effects of CO2 and temperature on f are illustrated in Fig. S2 and 
Fig. S3 (see Supplementary materials).

The partitioning of photoassimilates (CH2O) into sugarcane’s vege
tative components (leaf, non-millable top, stalk, and root) is managed by 
accounting for daily growth, growth stage, and temperature (Liu and 
Bull, 2001). Respiration is divided into growth and maintenance por
tions, with the growth respiration rate set as a constant, considering that 
synthesis of three units of new tissue that costs one unit of CH2O 
(Thornley and Johnson, 1990). Maintenance respiration (Rm) is deter
mined as a function of accumulated biomass and temperature. The large 
biomass of sugarcane can lead to a high Rm loss in the late growth 
stages, directly contributing to the reduced growth phenomenon (RGP) 
associated with biomass accumulation (van Heerden et al., 2010). By 
accounting for RGP, QCANE can effectively simulate sugarcane growth 
and sucrose accumulation under different growth durations and envi
ronmental conditions. The model distinguishes plant and ratoon crops 
by initial leaf area index (0.008 vs. 0.08), reflecting stubble and root 
reserves from the preceding crop, and simulates chained crop cycles in 
which ratoon growth benefits from these carry-over effects. QCANE also 
incorporates row spacing as an input, as narrower rows intercept more 
radiation prior to canopy closure than wider rows, although such dif
ferences diminish once the canopy develops.

2.3.2. Model validation
The QCANE model was initially calibrated and validated by Liu and 

Bull (2001) in Bundaberg, Queensland (lat. 24.83◦S, long.152.43◦E), a 
subtropical region located north of the study sites (lat. 28.32–29.42◦S, 
long.153.43–153.25◦E). The parameters built into QCANE were origi
nally reported by Liu and Bull (2001). In this study, we did not recali
brate the model; instead, we validated its performance by comparing 
simulated yields against available observations for the widely cultivated 
sugarcane variety Q208 in northern NSW. The data sources used for 
validation are provided in Table S1 (see Supplementary materials).

We used the coefficient of determination (R2), root mean squared error 
(RMSE), and normalized root mean squared error (nRMSE) to evaluate the 
model’s performance for both simulated and observed yields. These 
metrics are widely accepted and provide a comprehensive evaluation of 
model accuracy and fit (Feng et al., 2018; Li et al., 2022; Wang et al., 
2022). As RMSE approaches 0, and R2 approaches 1, predictions become 
increasingly accurate. When the value of nRMSE is below 20 %, the model 
is acceptable (Li et al., 2021). The model assessment indicators, R2, RMSE, 
and nRMSE, were calculated as follows: 

R2 = 1 −
SSR
SST

(7) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2
√

(8) 

nRMSE =
RMSE

O
× 100% (9) 

where SSR (Sum of the Squared Residuals) represents the sum of the 
squared differences between each predicted value and the mean of the 
dependent variable, and SST (Total Sum of Squares) represents the total 
variance in the dependent variable. Here, Oi and Pi are the predicted and 
observed values, respectively, O represents the mean of the observed 
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values, and n is the number of samples.

2.3.3. Long-term simulations
The QCANE model was used to quantify the potential impacts of 

future climate change on sugarcane productivity in NSW. Simulations 
were performed from 1981 to 2100 at the three study sites. We used a 
typical sugarcane growth cycle consisting of one plant crop followed by 
three ratoon crops (i.e., four harvests in total) before replanting, 
consistent with regional management practices in which up to eight 
years of cane production are implemented under a two-year harvest 
cycle (SunshineSugar, 2022). Irrigation is not usually applied in the 
NSW region (Topp et al., 2022), because of the high rainfall and pres
ence of shallow water tables (Everingham et al., 2015). Therefore, the 
simulations were under rain-fed conditions without nitrogen stress.

To determine the harvest cycle, a sucrose weight (SW) threshold of 
13.5 Mg ha− 1 was defined, as extractable sugar is the primary product 
and key driver of profitability. Based on recent average sugar yields in 
NSW (SRA, 2024), this threshold determines whether sugarcane is 
harvested within a single year or allowed to grow further. If the SW 
exceeds 13.5 Mg ha− 1 within a single year, the crop is harvested and 
classified as 1-year-old sugarcane. If the threshold is not met, the crop 
continues to grow into a second year to achieve a harvestable yield and 
is then classified as 2-year-old sugarcane. This approach reflects com
mon sugarcane production practices in NSW (SRA, 2024). The sugarcane 
harvest season typically spans from June to November, with September 
being the predominant planting month across the three sites 
(SunshineSugar, 2022). To ensure consistency across scenarios and sites, 
a representative planting date of 1 Sep was selected, with the corre
sponding harvest date set to 31 Aug of the following year to define a 1- 
year or 2-year growth cycle. This standardized approach enabled 
consistent comparison of yield and harvest frequency across sites and 
scenarios, while minimizing the influence of management variability 
and isolating the effects of climate factors. This study used a widely 
cultivated sugarcane variety Q208 across three sites in NSW (SRA, 
2024). Row spacing was set at 1.5 m.

2.4. Secondary bias correction

Biases in GCM data and limitations in the bias correction process 
during downscaling can result in discrepancies between GCM-derived 
climate data and observations (Haerter et al., 2011). To address this, a 
secondary bias correction is applied to further minimize residual biases 
that persist after the initial correction. This additional adjustment 

enhances the comparability of outputs from different GCMs, improving 
the reliability of impact assessments under future climate scenarios. In 
this study, this secondary bias correction was consistently applied to all 
simulated outputs driven by downscaled GCM data, following the 
method of Yang et al. (2016): 

Bs = YGCM,b − Yobs,b (10) 

Y = YGCM − Bs (11) 

where Bs represents the secondary bias, YGCM,b is the mean values of 
QCANE outputs over the baseline period (1981–2020) for simulations 
using downscaled GCM data, and Yobs,b is that driven by observed 
climate data of the same period. Y is the output after applying the sec
ondary bias correction, and YGCM is the QCANE simulated output driven 
by GCM data.

2.5. Statistical analysis of climate influences on yield

To quantify the effects of key climatic variables on projected changes 
in sugarcane yield under future scenarios, a multiple linear regression 
analysis was conducted (see Eq. (12)). The dependent variables were the 
projected changes in stalk fresh weight (ΔFW), above-ground biomass dry 
weight (ΔDW), and sucrose weight (ΔSW), relative to the baseline period 
(1981–2020) for the mid-future (2040s; 2021–2060) and far-future 
(2080s; 2061–2100) under SSP126, SSP245, SSP370, and SSP585 across 
the three study sites. Independent variables included projected changes in 
average temperature (ΔT, ◦C), total rainfall (ΔRf, mm), global solar ra
diation (ΔRad, MJ m− 2), and atmospheric CO2 concentration (ΔCO2, 
ppm). The regression model was specified as follows: 

ΔY = a×ΔT+ b×ΔRf + c×ΔCO2 +d×ΔRad (12) 

where ΔY is the dependent variable (e.g., ΔFW, ΔDW, and ΔSW) and 
a–d are the fitted coefficients. Model performance was evaluated using 
the coefficient of determination (R2), and statistical significance was 
assessed at levels of P < 0.05, 0.01, and 0.001.

To further quantify the relative contribution of each climatic variable 
to the variation in yield, partial coefficients of determination (partial R2) 
were calculated for each factor. The partial R2 for each variable was 
computed as: 

Partial R2 =
R2

full − R2
reduced

1 − R2
reduced

(13) 

Fig. 2. Model validation of simulated versus observed sugarcane stalk fresh weight (FW, a) and sucrose weight (SW, b) across three sites. FW and SW points include 
both 1-year-old (blue) and 2-year-old (green) sugarcane crops. The observed data used for model validation is presented in Table S1 (see Supplementary materials). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Projected changes in annual mean minimum temperature (Tmin, a), maximum temperature (Tmax, b), rainfall (c), and global solar radiation (d) based on 27 
GCMs under four scenarios (SSP126, SSP245, SSP370, and SSP585) for Condong, Broadwater, and Harwood in NSW. Changes are shown relative to the baseline 
period (1981–2020) for the mid-future (2040s; 2021–2060) and the far-future (2080s; 2061–2100). The boundaries of the boxes represent the 25th and 75th 
percentiles, while the whiskers extend to the 10th and 90th percentiles. The black line within each box indicates the multi-model median and the crosshair represents 
the multi-model mean. The 95 % confidence intervals of the mean are provided in the Fig. S4 (see Supplementary materials).

S. Yao et al.                                                                                                                                                                                                                                      Agricultural Systems 231 (2026) 104502 

6 



where R2
full is the R2 of the full model including all variables, and R2

reduced 

is the R2 of a reduced model with the target variable removed.

3. Results

3.1. Model validation

The performance of the QCANE model was validated by comparing 
simulated values with observed values for stalk fresh weight (FW) and 
sucrose weight (SW). The results indicated high model accuracy, 
explaining 83 % (R2 = 0.83) of the variance for FW and 80 % (R2 = 0.80) 
for SW, with RMSE values of 12.0 Mg ha− 1 for FW and 1.9 Mg ha− 1 for 
SW (Fig. 2). Additionally, the regression slopes, ranging from 0.92 to 
1.03, indicate strong alignment between simulated and observed data, 
with nRMSE values remaining below 10 %. These results enhance con
fidence in the QCANE model’s reliability for simulating sugarcane 
growth in the study area.

3.2. Projected future climate

Across all three sites, both minimum and maximum temperatures 

were projected to increase over time under each emission scenario 
compared to the baseline (Fig. 3a–b). The incremental changes in min
imum and maximum temperatures were projected to be most pro
nounced under SSP585, especially by the 2080s. Specifically, the 
smallest increase in minimum temperature based on the multi-GCM 
ensemble means was under SSP126 in the 2040s at 1.1 ◦C, while the 
largest increase was under SSP585 in the 2080s reaching 4.1 ◦C across 
the three sites (Fig. 3a). In contrast, changes in maximum temperature 
were projected to be slightly lower than those in minimum temperature 
across all scenarios, with increases between 0.9 ◦C and 2.7 ◦C (Fig. 3b).

In contrast to temperature, projected changes in rainfall exhibited 
substantial variability among the 27 GCMs across all SSP scenarios, as 
reflected in the large difference between the 10th and 90th percentiles 
(Q90 − Q10). Some GCMs projected increases, while others indicated 
decreases (Fig. 3c). For example, the greatest variability was observed 
under SSP585 in the 2080s at Condong, where projections ranged from 
− 285 mm to 281 mm among the 27 GCMs. Despite this variation, the 
multi-GCM ensemble means projected minimal changes in annual 
rainfall, ranging from − 1 % to 0.9 % across all scenarios by the 2040s, 
and from − 3 % to − 1 % by the 2080s relative to the baseline period, 
with the largest reduction occurring under SSP126.

Relative to the baseline, the multi-GCM ensemble means projected a 

Fig. 4. Projected durations of phenological stages of emergence (EM, a) and cane appearance (CaneApp, b) based on 27 GCMs under four scenarios (SSP126, SSP245, 
SSP370, and SSP585) for Condong, Broadwater, and Harwood in NSW during the mid-future (2040s; 2021–2060) and the far-future (2080s; 2061–2100). The 
boundaries of the boxes represent the 25th and 75th percentiles, while the whiskers extend to the 10th and 90th percentiles. The black line within each box indicates 
the multi-model median and the crosshair represents the multi-model mean. The red dashed lines represent the baseline durations of EM and CaneApp during the 
historical period (1981–2020). The 95 % confidence intervals of the mean are provided in the Fig. S5 (see Supplementary materials). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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slight increase in future global solar radiation across all scenarios and 
sites, with a more pronounced rise in the 2080s (Fig. 3d). In the 2040s, 
the projected increase ranged from 0.2 % to 0.8 %, with the smallest 
change under SSP370. In the 2080s, the increase ranged from 0.3 % to 
1.4 %. Consistently, SSP370 showed the smallest increase.

3.3. Sugarcane phenology changes under climate change

Fig. 4. illustrates the projected duration of two key sugarcane growth 
stages: emergence (from planting/ratoon to emergence, EM) and 
tillering (from emergence to cane appearance, CaneApp). The baseline 

simulations for 1981–2020 indicate that the EM stage lasted an average 
of 26 ± 2 days, while the CaneApp stage spanned approximately 137 ±
12 days across the three sites. Under future climate scenarios, both EM 
and CaneApp stages were projected to shorten across all sites, with 
greater reductions in the far future under higher emission scenarios. By 
the 2040s, the EM stage was expected to decrease to 22 days across all 
emission scenarios. By the 2080s, it was projected to shorten further to 
20, 18, and 17 days under SSP245, SSP370, and SSP585, respectively, 
while SSP126 remained unchanged from the 2040s. The averaged EM 
stage in the 2080s was projected to be 19 days, with a reduction of 7 
days compared to the baseline period. Similarly, the CaneApp stage was 

Fig. 5. Projected changes in stalk fresh weight (FW, a), above-ground biomass dry weight (DW, b), and sucrose weight (SW, c) based on 27 GCMs under four 
scenarios (SSP126, SSP245, SSP370, and SSP585) for Condong, Broadwater, and Harwood in NSW. Changes are shown relative to the baseline period (1981–2020) 
for the mid-future (2040s; 2021–2060) and the far-future (2080s; 2061–2100). The left-hand y-axis indicates changes in absolute values, and the right-hand y-axis 
shows percentage changes. The boundaries of the boxes represent the 25th and 75th percentiles, while the whiskers extend to the 10th and 90th percentiles. The 
black line within each box indicates the multi-model median and the crosshair represents the multi-model mean. The 95 % confidence intervals of the mean are 
provided in the Fig. S6 (see Supplementary materials).
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projected to shorten over time, decreasing to 127, 126, 126, and 124 
days in the 2040s and further to 124, 119, 114, and 110 days by the 
2080s under SSP126 to SSP585. On average across the three sites, it was 
expected to decline to 126 days in the 2040s (11 days shorter than the 
baseline) and to 117 days in the 2080s (a decrease of 20 days).

3.4. Simulated sugarcane yield changes

The projected yield change, including changes in FW, above-ground 
biomass dry weight (DW), and SW, showed a consistent increasing trend 
across all climate change scenarios in the three study sites (Fig. 5). A 
modest yield increase was projected by the 2040s, followed by a more 
pronounced rise by the 2080s as emissions increased. Notably, under 
SSP126, yield changes between the 2040s and 2080s were minimal, 
suggesting a limited impact under lower emission pathways. From 
SSP126 to SSP585, FW was projected to increase from 6 to 34 Mg ha− 1 

(i.e., 6–29 %), DW from 2 to 11 Mg ha− 1 (6–29 %), and SW from 1 to 7 
Mg ha− 1 (10–46 %) across the three study sites. The largest absolute 
increases in FW, DW, and SW were projected at Broadwater under 
SSP585 in the 2080s, whereas the smallest absolute increases were 
observed at Harwood under SSP126 in the same period. However, 
Harwood was projected to experience the highest percentage increases 
in FW, DW, and SW under SSP585 in the 2080s, highlighting the varying 
site-specific responses to climate change scenarios.

3.5. Projected change in the annual harvest frequency

During the baseline period (1981–2020), the annual harvest frequency 
was 80 %, 70 %, and 50 % for Condong, Broadwater, and Harwood, 
respectively (Fig. 6). In future projections, the annual harvest frequency 
was projected to increase with rising emissions, with a slight rise expected 
by the 2040s, followed by a more pronounced increase by the 2080s. In the 
2040s, the annual harvest frequency ranged from 90 % to 91 % in Condong, 
89 % to 90 % in Broadwater, and 70 % to 73 % in Harwood across the four 
scenarios. By the 2080s, it ranged from 90 % to 94 % in Condong, 88 % to 
96 % in Broadwater, and 68 % to 85 % in Harwood across the four sce
narios. Additionally, the greatest incremental changes in annual harvest 
frequency were observed under SSP585 in the 2080s across all three sites, 
with increments of 14 % at Condong, 26 % at Broadwater, and 35 % at 
Harwood. This pattern showed a rising trend in the incremental change of 
annual harvest frequency from the cooler region of Harwood to the warmer 
region of Condong.

3.6. Statistical analysis of factors influencing yield changes

The regression model quantified the contribution of each climate 
variable to yield changes in stalk fresh weight (ΔFW), above-ground 
biomass dry weight (ΔDW), and sucrose weight (ΔSW), explaining 
93–96 % of the total variation in yield (Table 2). This indicated a strong 

Fig. 6. Projected annual harvest frequency (%) based on 27 GCMs under four scenarios (SSP126, SSP245, SSP370, and SSP585) for Condong, Broadwater, and 
Harwood in NSW during the mid-future (2040s; 2021–2060) and the far-future (2080s; 2061–2100). The red dashed lines represent the annual harvest frequency 
during the baseline period (1981–2020). The boundaries of the boxes represent the 25th and 75th percentiles, while the whiskers extend to the 10th and 90th 
percentiles. The black line within each box indicates the multi-model median and the crosshair represents the multi-model mean. The 95 % confidence intervals of 
the mean are provided in the Fig. S7 (see Supplementary materials). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

Table 2 
Regression coefficients for projected changes in yield (ΔY) in response to changes in temperature (ΔT), rainfall (ΔRf), global solar radiation (ΔRad), and CO2 con
centration (ΔCO2) at three sites. FW, DW, and SW represent sugarcane stalk fresh weight, above-ground biomass dry weight, and sucrose weight, respectively. *, ** and 
*** indicate the significant at the level of P < 0.05, P < 0.01 and P < 0.001, respectively.

ΔY Site a (ΔT) (kg 
ha− 1 ◦C− 1)

b (ΔRf) (kg ha− 1 mm− 1 

yr− 1)
c (ΔCO2) (kg ha− 1 

ppm− 1)
d (ΔRad) (kg ha− 1 (MJ m− 2 

yr− 1)− 1)
R2 Partial R2

ΔT ΔRf ΔCO2 ΔRad

ΔFW Condong 2875*** 16.99*** 46.09*** 0.95 0.95 0.29 0.20 0.48 0.00
Broadwater 2936*** 15.13*** 48.83*** 2.10 0.95 0.30 0.11 0.45 0.00
Harwood 2190*** 26.91*** 39.96*** 4.34** 0.96 0.36 0.43 0.51 0.04

ΔDW Condong 828*** 5.51*** 17.12*** 0.21 0.93 0.18 0.15 0.45 0.00
Broadwater 916*** 4.94*** 18.17*** 1.30 0.94 0.21 0.07 0.42 0.01
Harwood 432*** 8.93*** 17.34*** 2.39*** 0.95 0.13 0.36 0.57 0.09

ΔSW Condong 619*** 3.43*** 10.55*** 0.70 0.94 0.27 0.17 0.48 0.01
Broadwater 669*** 2.37*** 10.08*** 0.81 0.95 0.31 0.05 0.41 0.01
Harwood 466*** 5.01*** 8.68*** 1.20*** 0.95 0.31 0.31 0.46 0.06
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relationship between changes in climatic factors and sugarcane yield 
across the three sites. All climatic factors had a positive effect on yield 
changes, and temperature change (ΔT), rainfall change (ΔRf), and CO2 
concentration change (ΔCO2) significantly influenced yield variation (p 
< 0.001) at all sites. Among the climate variables, ΔCO2 accounted for 
the largest proportion of yield variation, with partial R2 values ranging 
from 0.41 to 0.57 across the three sites. However, the second most 
influential factor varied by location, with ΔT having a stronger influence 
at Condong and Broadwater, whereas ΔRf was more influential at 
Harwood.

The site-specific responses further illustrate this variation. Broad
water exhibited the highest sensitivity to ΔT among the three sites, with 
ΔFW, ΔDW, and ΔSW increasing by 2936, 916, and 669 kg ha− 1 ◦C− 1, 
respectively. In contrast, Harwood showed the strongest response to 
ΔRf, with corresponding increases of 26.91, 8.93, and 5.01 kg ha− 1 per 
mm of rainfall. The effect of ΔCO2 was relatively consistent across sites, 
contributing average increases of 45, 18, and 10 kg ha− 1 in FW, DW, and 
SW, respectively, for each ppm increase in atmospheric CO2.

4. Discussion

This study provides valuable insights into the potential impacts of 
climate change on sugarcane yield and harvest frequency. However, it is 
important to acknowledge the uncertainties and limitations of the 
modeling approach (Corbeels et al., 2018; Jaiswal et al., 2023; Wang 
et al., 2024). First, the simulations assume optimal conditions, excluding 
biotic stresses (e.g., pests and diseases) and abiotic stresses beyond those 
represented by climatic variables (e.g., extreme weather events such as 
heatwaves or flooding). In reality, these factors can significantly affect 
sugarcane growth and yield, particularly under changing climate con
ditions (Hussain et al., 2018; Zhao and Li, 2015), and their exclusion 
may contribute to an overestimation of future yield potential. Addi
tionally, while the QCANE model has been previously validated for 
sugarcane yield in various regions, including Queensland and interna
tional locations, we acknowledge that in this study, model validation 
focused primarily on yield-related outputs. The absence of validation for 
other key outputs such as phenological markers and water flux variables 
(e.g., evapotranspiration, soil moisture) represents a limitation. Future 
work should aim to expand model evaluation to include water balance 
components and other key processes of sugarcane growth, to enhance 
confidence in the simulation of sugarcane productivity under climate 
change.

Second, a uniform harvest date was assumed for each region, 
whereas actual harvest seasons span several months to align with milling 
capacity. This approach simplifies operational variability and may not 
fully capture regional practices. Finally, our simulations relied on a 
validated crop model (QCANE), climate projections from 27 GCMs 
under CMIP6, and the assumption that current management practices 
remained unchanged throughout the 21st century. These projections 
inherently involve uncertainty, as Corbeels et al. (2018) emphasized 
that GCMs are designed to explore potential future climate trends rather 
than provide precise predictions and assuming fixed management may 
not reflect future realities. Therefore, while the projections indicated 
promising opportunities for more frequent annual harvesting under 
warming conditions, these findings should be interpreted within the 
bounds of these uncertainties. However, the decision to hold manage
ment practices constant was made to intentionally isolate the effects of 
climate change on sugarcane yield and harvest frequency, allowing for a 
clearer attribution of yield changes to climatic drivers. This study pro
vides a well-defined, climate-driven baseline, and future studies are 
encouraged to incorporate potential future farming strategies to 
enhance the robustness and policy relevance of long-term projections. 
Additionally, future research could explore regional variations in 
climate sensitivity, projected yield impacts, and adaptive management 
strategies across Australia’s broader sugarcane-growing regions.

The performance of the QCANE model was validated by comparing 

simulated and observed values for stalk fresh weight (FW) and sucrose 
weight (SW), showing strong agreement across the study regions. 
Similar results were observed in the study by Zu et al. (2018), which 
indicated the accuracy of the QCANE model in simulating sugarcane 
yields across diverse growth conditions in southern China. While 
phenological stages were not explicitly validated at the study sites, the 
QCANE model has shown strong performance in simulating sugarcane 
growth and development. Using data from Bundaberg, Queensland 
(24.83◦S, 152.43◦E), the simulated time series of stalk fresh weight, 
above-ground dry matter, and sucrose weight showed strong agreement 
with observations across crop growth, achieving performance efficiency 
values between 0.81 and 0.98 (see Supplementary materials, Fig. S8). 
Although this did not directly validate phenological stages, it provides 
strong evidence of the model’s high accuracy in simulating growth dy
namics. Additionally, Zu et al. (2018) reported excellent agreement for 
phenological development stages in China, with R2 of 0.99 for both 
simulated versus observed emergence days and cane appearance days. 
These findings support confidence in the model’s ability to simulate key 
physiological processes relevant to this study.

Our analysis indicated a sustained warming trend projected for 
sugarcane-growing regions in northern coastal NSW over the coming 
decades based on multi-model mean outputs from 27 CMIP6 GCMs. In 
contrast, projections for annual rainfall showed considerable uncer
tainty among the GCMs, as indicated by the wide interdecile (Q90 – 
Q10) range of projected changes, spanning both decreases and increases. 
For example, under SSP585 in the 2080s at Condong, the Q90 – Q10 
range extended from − 285 mm to 281 mm across the 27 GCMs. These 
projected trends in temperature and rainfall align with findings from 
previous studies in Australia that utilized both global and regional 
climate models (AdaptNSW, 2024a; Nishant et al., 2021; Wang et al., 
2018; Wang et al., 2022).

The QCANE model simulates phenology based on the accumulation 
of thermal time, accounting for the temperature effects in both subop
timum and supra-optimum regions (Liu et al., 1998). In this study, the 
results indicated that phenological stages, such as emergence and cane 
appearance, shortened under future scenarios. By the 2080s, the emer
gence stage was projected to shorten by 7 days, averaging 19 days, while 
the cane appearance stage was expected to decrease by 20 days, 
reaching 117 days. This reduction was primarily due to elevated tem
peratures accelerating plant development by increasing the rate of 
thermal time accumulation, thereby advancing the onset of various 
phenological phases (He et al., 2015; Jones and Singels, 2018; Sparks 
et al., 2000). These findings were consistent with previous studies, 
where Jaiswal et al. (2023) reported that the average duration from 
planting to emergence was shortened by up to 14.5 days under a high- 
emission pathway by 2070–2099 in India using the CANEGRO model. 
Similarly, Ruan et al. (2018) simulated that the duration from planting 
or ratooning to cane appearance decreased by up to 20 days during the 
2090s in southern China using the APSIM-Sugarcane model.

Our simulations projected that sugarcane yield would increase across 
the three study sites in the future, with the highest increases in FW, DW, 
and SW occurring at Broadwater under SSP585 by the 2080s, reaching 
up to 34 Mg ha− 1, 11 Mg ha− 1, and 7 Mg ha− 1, respectively. Statistical 
analysis demonstrated that changes in future climatic factors contrib
uted positively to yield increases, with temperature, rainfall, and CO2 
concentration significantly influencing yield variation across all sites. 
Among the climatic factors, changes in [CO2] explained the largest 
proportion of yield variation with the highest partial R2 values across the 
three sites, highlighting its dominant role in driving yield responses 
under future climate conditions. Following [CO2], temperature was the 
second influential factor in Condong and Broadwater, however, rainfall 
was more influential at Harwood. This site-specific variation likely re
flects differences in baseline climate and water availability. Condong 
and Broadwater, located in more humid regions, typically receive higher 
annual rainfall, which may reduce the limiting role of water, making 
temperature a more critical factor influencing growth and development. 
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In contrast, Harwood experiences relatively lower rainfall and is more 
prone to water stress, making yield more sensitive to variations in 
rainfall. These findings align with previous studies, which indicate that 
temperature drives yield variability in wetter environments (Muchow 
et al., 1996), while rainfall is the dominant constraint in drier or more 
variable regions (Everingham et al., 2015).

However, radiation was not a significant factor influencing yield. 
The non-significant effect of solar radiation may be attributed to its 
relatively small projected change (− 2 % to 4 %, as shown in Fig. 3) 
compared to other variables such as rainfall, which ranges from − 17 % 
to 17 %. This limited variability reduces its statistical influence in the 
linear regression analysis. Similarly, Ruan et al. (2018) found that solar 
radiation had limited impact on stalk fresh weight and dry biomass 
under future climate scenarios in China. Furthermore, Australia has the 
highest average solar radiation per square metre of any continent in the 
world (ARENA, 2013). As a result, solar radiation is generally abundant 
and rarely serves as a growth-limiting factor for crops and vegetation 
compared to other climatic drivers such as water availability and tem
perature. For example, Wang et al. (2022) assessed the impacts of 
climate change on aboveground biomass in regenerating native forests 
in southeast Australia and found that solar radiation had a relatively 
minor effect on biomass accumulation.

Elevated [CO2] levels associated with climate change can enhance 
sugarcane growth through the CO2 fertilization effect (Vu et al., 2006). 
Higher [CO2] is likely to have a significant impact on sugarcane 
photosynthesis, enabling the plant to partially close its stomata without 
substantially reducing CO2 uptake (De Souza et al., 2008; Reddy and 
Hodges, 2000). De Souza et al. (2008) demonstrated that sugarcane 
exposed to double the normal [CO2] levels experienced a 30 % increase 
in photosynthesis and accumulated 40 % more biomass compared to 
plants grown under normal [CO2] conditions in Brazil. Similarly, in 
Australia, simulations by Biggs et al. (2013) showed that sugarcane 
yields were substantially influenced by the CO2 fertilization effect, with 
yields 10–14 % higher than identical scenarios without the CO2 effect. In 
addition, under projected rainfall decline, rising [CO2] levels can 
improve water use efficiency by reducing stomatal conductance and 
transpiration, thereby minimizing water loss (Jackson et al., 2016; 
Malan, 2017). Although higher temperatures can increase transpiration 
(Singels et al., 2014), the CO2 fertilization effect helps offset this in
crease (Marin et al., 2013), thereby contributing to the sustainability of 
sugarcane production under future climate conditions.

Future climate projections and impact analyses are important to 
assess the potentially changing sugarcane harvest frequency under 
climate change. To our knowledge, this is the first study that projected 
the effects of climate change on harvest frequency in Australia. In NSW, 
the annual harvest frequency was projected to increase, with 68–96 % of 
years in the future expected to support annual harvests (Fig. 6). This 
shift could significantly increase the yield for all sites as the cumulative 
yield of 1-year-old sugarcane was higher than that of 2-year-old sugar
cane within two years (Fig. S9, see Supplementary materials). The lower 
average yield over a 2-year growth cycle resulted from the inclusion of a 
suboptimal yielding year, often caused by unfavorable climate condi
tions that extend the crop cycle into a second year. In addition, the lower 
yields in 2-year-old sugarcane were attributed to the reduced growth 
phenomenon (RGP) commonly reported in NSW (Muchow et al., 1999; 
Park et al., 2005; Sage et al., 2013). In the second year, greater biomass 
accumulation leads to increased respiration losses, substantially slowing 
the rate of further biomass production. Therefore, the average yield of 
the 2-year-old sugarcane was lower when compared to the yield of two 
consecutive 1-year cycles for the same years (Fig. S9, see Supplementary 
materials). Despite this, 2-year cultivation may still be necessary if first- 
year yields are unsatisfactory for some regions. This decision is often 
driven by economic considerations, including the costs of harvesting and 
transportation, as well as potential losses during sugar milling, which 

may outweigh the benefits of harvesting twice within a two-year period 
(SunshineSugar, 2022).

Increased yield and more frequent annual harvests suggest that 
climate change could positively impact sugarcane production in NSW, 
offering opportunities to enhance future productivity. Warmer temper
atures could enable the expansion of cultivation into cooler southern 
regions, which are expected to become favorable for sugarcane growth. 
Additionally, shorter growing seasons will drive the development of a 
more efficient sugarcane industry. To fully capitalize on these oppor
tunities, the economic feasibility of shifting to more frequent annual 
harvesting should be comprehensively evaluated by weighing the yield 
benefits against the required investments in mechanization, trans
portation, and processing infrastructure. Additionally, it will be essen
tial to develop new sugarcane cultivars that are better adapted to 
changing climatic conditions (Scortecci et al., 2012; Srivastava and Rai, 
2012). High-yielding, fast-growing varieties with enhanced photosyn
thesis optimized for 1-year growth cycles, will be critical for maximizing 
productivity during shorter growing periods. These implications would 
be crucial for developing adaptive strategies and informing policy
makers to make evidence-based decisions that support the sustainability 
of the sugarcane industry in NSW under climate change.

5. Conclusion

This study evaluated the potential impacts of climate change on 
sugarcane yield and the annual harvest frequency using 27GCMs under 
four scenarios (SSP126, SSP245, SSP370, and SSP585) in northern 
coastal NSW. Our findings indicated that climate change was projected 
to positively affect sugarcane yield, accompanied by accelerated crop 
growth. Among climatic factors, temperature, rainfall, and [CO2] had 
significant effects on yield. Furthermore, future projections indicated an 
increase in annual harvest frequency, with a particularly pronounced 
rise in the cooler region of Harwood. The shift toward 1-year harvest was 
expected to boost sugarcane productivity in NSW. These findings pro
vide valuable insights for leveraging the benefits of climate change in 
the sugarcane industry and contribute to the development of sustainable 
practices and more efficient production management strategies in NSW, 
ensuring the resilience and long-term sustainability of sugarcane culti
vation under changing climatic conditions.
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