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A B S T R A C T

Winter wheat is a vital staple crop in northern China, and climate change is expected to increase the frequency of 
droughts, leading to reduced yields. Therefore, it is crucial to study the impact of climate change on winter wheat 
yield and develop strategies to mitigate these effects. This study used CMIP6 data and an improved DSSAT- 
CERES-Wheat model to simulate winter wheat’s phenological stages, yield, and water stress factors in the 
Middle and upper reaches of Yellow River basin from 2022 to 2050 and proposed measures to counteract yield 
reduction. The results revealed that optimal sowing dates and irrigation strategies remained stable under both 
the Shared Socioeconomic Pathway 2–4.5 (SSP2–4.5) and Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) 
scenarios across the middle and upper reaches of the Yellow River Basin. Early sowing combined with targeted 
irrigation during the jointing and grain-filling stages enhanced winter wheat yields but led to delayed pheno-
logical development. Moreover, variations in water productivity (WPc) and yield exhibited consistent spatial 
patterns across the three subregions of the study area. In region 1, the optimal sowing date is 10 days earlier, 
with a sowing window of 7–13 days earlier. During normal and dry years, irrigation requirements at the jointing 
and filling stages are 70 mm and 90 mm, respectively. In regions 2 and 3, the optimal sowing date is 15 days 
earlier, with a sowing window of 12–18 days earlier. Under the SSP2–4.5 and SSP5–8.5 scenarios, the overall 
growth rates of winter wheat yield in the Middle and upper reaches of Yellow River basin were 20.62 % and 
16.32 %, respectively, with irrigation levels of 60 mm and 80 mm at the jointing and filling stages during normal 
and dry years. This study provides valuable insights and references for developing strategies to mitigate winter 
wheat yield reduction in the Middle and upper reaches of Yellow River basin under future climate scenarios.

1. Introduction

Wheat yield is a critical parameter for global food security, and 
winter wheat (Triticum aestivum L.) is extensively cultivated worldwide 
(Shiferaw et al., 2013). In China, winter wheat is primarily grown in the 
southwest, northwest, the Huang-Huai-Hai Plain, and the middle and 
lower reaches of the Yangtze River, contributing up to one-sixth of the 
global winter wheat output (Wu et al., 2022). In the Middle and upper 

reaches of Yellow River Basin, winter wheat is the most essential food 
crop, crucial for sustaining people’s livelihoods (Long et al., 2022) and 
the contemporary economic development of the region. However, 
winter wheat growth in the Middle and upper reaches of Yellow River 
Basin faces challenges from climate change, rising temperatures, and 
increased drought events (Christian et al., 2021). Despite these chal-
lenges, uncertainty persists regarding how winter wheat will grow and 
develop under future drought conditions and which drought mitigation 
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strategies will be most effective. Therefore, forecasting winter wheat 
yields under future drought scenarios and developing appropriate 
response strategies are crucial for ensuring national food security and 
supporting economic development.

Various methods exist to assess the impact of drought on winter 
wheat yield, including field water control experiments (Gao et al., 
2007), crop growth models (Bai et al., 2024; Rahimi-Moghaddam et al., 
2021), and statistical analyses (Javed et al., 2021; Shi et al., 2024). 
However, each method has inherent limitations. Field water control 
experiments are limited by time and space, crop models often under-
perform under water stress, and statistical methods fail to fully reveal 
the processes and mechanisms of drought impacts on crops (Sun et al., 
2021). To overcome these limitations, this study combines multiple 
methods and cross-validates results to reduce the uncertainty in drought 
impact assessments. This approach is crucial for reducing agricultural 
drought risk and ensuring food security.

Drought coping strategies have received widespread attention, with 
scholars proposing various approaches. These strategies can be catego-
rized into four main groups: livelihood diversification, long-term live-
lihood strategies, short-term coping activities, and erosion coping 
strategies (Quandt, 2021). Farmers typically adapt to drought by 
adjusting crop varieties and planting dates and implementing 
water-saving and irrigation management practices (Li et al., 2015). 
Previous research has demonstrated that adjusting sowing dates in 
response to drought (Hu et al., 2017; Yang et al., 2019; Tu et al., 2022) 
and adopting rational irrigation practices (Mu et al., 2023; Liu et al., 
2024) can enhance crop yields. However, few studies have investigated 
the combined effects of adjusting sowing dates and implementing irri-
gation practices on winter wheat in the arid and semi-arid regions of the 
middle and upper reaches of the Yellow River Basin.

Since the mid-20th century, drought-affected areas in the middle and 
upper reaches of the Yellow River Basin have shown a consistent annual 
expansion. Provinces including Gansu, Shaanxi, Henan, Shanxi, and 
Shandong have reported drought-impacted regions totaling up to 
75,300 km², accounting for approximately 70 % of the nation’s total 
drought-affected area. Crop losses in these regions can reach 
90,000 km², with direct economic losses amounting to 6 billion yuan. 
These conditions seriously threaten the Yellow River Basin’s economic 
development, food security, and ecological stability (Li et al., 2021). 
Notably, the middle reaches of the Yellow River, which are situated in 
arid and semi-arid ecologically fragile zones, are also critical areas for 
soil and water conservation efforts in China (Zhang et al., 2023). 
Therefore, quantitative assessments of drought impact on grain crops in 
the Middle and upper reaches of Yellow River Basin are valuable for 
maintaining the region’s ecological and food security.

Considering the current drought conditions affecting winter wheat in 
the middle and upper reaches of the Yellow River Basin. In alignment 
with the region’s sustainable development goals, an enhanced DSSAT- 
CERES-Wheat model was employed to simulate winter wheat’s pheno-
logical development and yield from 2022 to 2050. The objective of this 
study were to (1) reveal the change in winter wheat growth and 
development under future climate and drought scenarios, (2) identify 
the optimal sowing times for achieving high yields of winter wheat in 
various regions of the Middle and Upper reaches of Yellow River basin, 
(3) explore the optimal growth stage of winter wheat under the optimal 
sowing dates and local irrigation quotas. These findings aim to establish 
the best sowing dates and irrigation strategies for maintaining high and 
stable winter wheat yields under climate change and drought condi-
tions, providing a scientific basis for drought management and food 
security.

2. Materials and methods

2.1. Study area and data source

2.1.1. Study area
The middle and upper reaches of the Yellow River Basin originate in 

the Bayankala Mountains of Qinghai Province and flow from west to east 
through nine provinces and autonomous regions in China. This section 
of the basin encompasses 362 county-level administrative units and 
ultimately discharges into the Bohai Sea at Kenli County, Dongying City, 
Shandong Province. It traverses the first, second, and third topographic 
steps of China’s terrain, extending approximately 5464 km in length and 
covering a basin area of about 795,000 km2, with an internal flow area 
of roughly 42,000 km². The basin’s geographical range lies between 
95◦53’ to 119◦05’ E longitude and 32◦10’ to 41◦50’ N latitude, making it 
the second-longest river in China (Fig. 1). The climate in most parts of 
the Middle and upper reaches of Yellow River basin is characterized by a 
continental monsoon climate, with significant spatial variation due to 
topographic factors. Climatic conditions, such as precipitation and 
evaporation, vary greatly, with less rainfall and an uneven seasonal 
distribution. The western part of the basin tends to be drier, while the 
eastern part is wetter, with precipitation generally decreasing from 
southeast to northwest (Wang et al., 2020a). According to China’s nine 
agricultural region classification standards, the Middle and upper rea-
ches of Yellow River basin is divided into three distinct regions. Region 1 
is located in the middle and upper reaches of the Yellow River basin, 
which is classified as an arid and semi-arid agricultural region in the 
north. Region 2 is situated in the upper reaches of the Middle and upper 
reaches of Yellow River basin, part of the Qinghai-Tibet Plateau. Region 
3 is found in the lower reaches, which includes the Loess Plateau and the 
Huang-Huai-Hai Plain. Winter wheat cultivation varies across these re-
gions, with fewer cultivation sites in Regions 1 and 2 and a higher 
concentration of sites in Region 3.

2.1.2. Data source
The CMIP6 data is part of the sixth Coupled Model Intercomparison 

Project (CMIP), organized by the World Climate Research Programme 
(WCRP). It provides a reliable reference for predicting future climate 
change using global climate models (GCMs) (Ma et al., 2024; Zhu et al., 
2020). Compared to CMIP5, the ongoing CMIP6 models exhibit a lower 
degree of uncertainty in simulating precipitation and temperature, yield 
better results in extreme index changes, and offer improved applicability 
for future climate predictions across different climate models (Zhu et al., 
2021; Jia et al., 2023).

This study selected two Shared Socioeconomic Pathways (SSP2–4.5 
and SSP5–8.5) from the Coupled Model Intercomparison Project Phase 6 

Fig. 1. Distribution map of meteorological stations, elevation, and winter 
wheat stations in the Middle and upper reaches of Middle and upper reaches of 
Yellow River basin.
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(CMIP6) to predict future climate change in winter wheat-growing re-
gions of the Middle and upper reaches of Yellow River basin from 2022 
to 2050. The CMIP6 data were available through the CMIP6 global 
climate research plan (https://esgf-node.llnl.gov/search/cmip6/). The 
precipitation (P), maximum temperature (Tmax), minimum temperature 
(Tmin), solar radiation, and air pressure were downloaded from 27 
different GCMs (Table S1) from 1961 to 2050.

Soil data, including soil moisture and physical parameters, were 
obtained through the Google Earth Engine (GEE) platform (https://co 
de.earthengine.google.com/). The daily data of soil moisture content 
data at depths of 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm from 
the GLDAS dataset, covering the years 1961–2021, were extracted for 
the station. Data on soil physical parameters, including bulk density, 
field capacity, and wilting coefficient, were sourced from the Cold and 
Arid Regions Science Data Center National Earth Science Data Platform 
(http://westdc.westgis.ac.cn/).

Phenological data for winter wheat, sampled from observation sta-
tions in the middle and upper reaches of the Yellow River Basin between 
1992 and 2013, along with yield data collected from 2000 to 2013, were 
obtained from the China Meteorological Data Service Center. The 
growth cycle of winter wheat is classified into nine stages: sowing, 
emergence, overwintering, green-up, jointing, panicle formation, 
heading, flowering, and maturity. Winter wheat is sown between 
September and October and harvested the following June. The types, 
sources, and sampling details of all datasets used are summarized in 
Table 1.

2.2. Methods

2.2.1. Improved DSSAT-CERES-Wheat model
The DSSAT (Decision Support System for Agrotechnology Transfer) 

model, developed by the United States Department of Agriculture, is 
widely used for agricultural test analysis, yield forecasting, and agri-
cultural production risk assessment. Known for its user-friendly inter-
face and broad applicability, the DSSAT incorporates the CERES-Wheat 

model within the CSM (Crop System Model) platform (DSSAT v4.7) to 
simulate soil carbon and nitrogen dynamics, water balance, as well as 
wheat growth, development, and yield. To simulate crop growth and 
yield accumulation from sowing to harvest, the model requires inputs 
such as meteorological data, soil data, crop management data, and crop 
parameter data (Jones et al., 2003).

We conducted the DSSAT-CERES-Wheat model by improving the 
method of water stress factors (SWFAC). Under full irrigation conditions, 
potential root water uptake (TRWUP) is typically greater than potential 
root transpiration (EP0). As root water absorption increases and surface 
evaporation rises, soil water content decreases, reducing TRWUP. This 
triggers the first drought stress factor (TURFAC) when a threshold is 
reached during a particular growth stage. When EP0 equals or exceeds 
potential root water uptake, a second stress factor (SWFAC) emerges, 
which predominantly affects processes related to crop growth and 
biomass formation (He et al., 2013). The improved nonlinear SWFAC 
(Fig. 2) was used to quantify the effect of drought stress on winter wheat 
yield (Yao et al., 2025).

The genetic parameters in the DSSAT model are related to crop 
growth, development, and yield accumulation, and only when appro-
priate genetic parameters are found can the phenological period and 
yield prediction be more accurate (Wei et al., 2022; Yao et al., 2022). 
The DSSAT-CERES-Wheat model has three related to phenological pe-
riods and four related to growth (Table 2). Crop model output variables 
of winter wheat phenology (flowering and maturity), maximum leaf 
area index, evapotranspiration, above-ground biomass, grain yield, and 
field observations were used to estimate parameters and validate the 
model. The winter wheat data from 1981 to 2021 were divided 
randomly into two datasets at a 7:3 ratio, with 70 % of the data for 
model calibration and 30 % for model validation. The default values 
required for program operation are set during parameter estimation. The 
generalized likelihood uncertainty estimation (GLUE) approach was 
used to estimate the genetic coefficients (He et al., 2010).

In this study, the modular mean absolute error (RMAE) and the 
relative root mean square error (RRMSE), which can measure the rela-
tive difference between simulated and measured values, can be 
compared between different variables (He et al., 2010; Yao et al., 2020).

The specific calculation formula of RMAE is as follows: 

RMAE =
1
n
∑n

i=1

|Si − Oi|

|Oi|
× 100% (1) 

The specific calculation formula of RRMSE is as follows: 

Table 1 
Basic Data information.

Data Category Description Source

Basic geographic 
information data of 
the study area

Boundary, river, and 
elevation data.

National Data Center for 
Glaciology and 
Permafrost Desert 
Science (http://www. 
ncdc.ac.cn).

Meteorological data Meteorological data of 
historical periods.

China Meteorological 
Data Service Center (htt 
p://data.cma.cn/).

Meteorological data in the 
future period (CMIP6).

Global Climate Research 
Program Center. (https:// 
aims2.llnl.gov/search/ 
cmip6/).

Soil data Soil texture. Resource and 
Environmental Science 
Data Platform 
(http://www.resdc.cn/).

Other physical parameters 
include soil bulk density, 
saturated water conductivity, 
and residual water content.

Data Center of the 
Qinghai-Tibet Plateau in 
China (https://data.tpdc. 
ac.cn/home/).

Soil moisture at different 
depths.

Google Earth Engine 
platform (https://code. 
earthengine.google.com/
).

Winter wheat field 
trial dataset from 
the experimental 
station

Experimental data on winter 
wheat from 
agrometeorological stations, 
including the phenological 
period data of winter wheat 
from 1992 to 2013 and the 
yield data from 2000 to 2013.

China Meteorological 
Data Service Center (htt 
p://data.cma.cn/).

Fig. 2. Default and a modified water stress response functions for water stress 
factors (SWFAC). The TRWUP was potential root water uptake, EP0 was po-
tential root transpiration. The black line represents the default SWFAC; the blue 
line represents the improved nonlinear SWFAC.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Oi)

2

√

(2) 

RRMSE =
RMSE

O
× 100% (3) 

where Si represents the i th simulated value, Srepresenting the average 
value of Si; Oi represents the i th observed value, Orepresenting the 
average value of Oi; n is the number of samples. In general, the smaller 
the RMAE and RRMSE values, the higher the simulation accuracy of the 
model.

2.2.2. Statistical downscaling
Using the NWAI-WG statistical downscaling method, monthly data 

from 27 GCM models under various climate scenarios in CMIP6 were 
downscaled both temporally and spatially to enhance the spatio- 
temporal resolution of the GCM data (Liu, Zuo, 2012). This approach 
provided daily meteorological data for 77 meteorological stations across 
the Middle and upper reaches of Yellow River basin from 1961 to 2100. 
The effectiveness of this method has been validated and applied in 
previous studies (Feng et al., 2019). 

(1) Downscaling the GCM data space 
The inverse distance weighted (IDW) interpolation method 

interpolates the monthly GCM data. This method can eliminate 
the compensation effect between the grids and make the daily 
time scale data of GCM after spatial downscaling more accurate 
and the spatial distribution smoother. The calculation formula is 
as follows: 

SDi =
∑4

k=1

[
1

d3
i,k

(
∑4

j=1

1
d3

i,j

)− 1

pk

]

(4) 

where SDi is the GCM value after downscaling the i site; di,k is the 
distance between the i th site and the surrounding k th cell (k = 1, 
2, 3, 4); pk is the GCM value of the k th cell.

(2) Deviation correction of GCM data 
The deviation between the measured values of P, Tmax, and Tmin 

and the downscaling values of GCM space from 1961 to 2000 was 
corrected by drawing a Q-Q graph, and the deviation correction 
function of P, Tmax, and Tmin at each station was obtained. It is 
assumed that the change of the downscaling meteorological ele-
ments data of each GCMs space follows the deviation correction 
function and is linearly correlated with the observed values. The 
corrected GCMs values are calculated using the linear interpola-
tion method, and the obtained parameters are applied to future 
scenario models (Chen, 2021).

(3) Time scaling of GCM data after spatial scaling 
The weather generator (WGEN) is vital for studying climate 

change impacts and can simulate day-to-day meteorological in-
formation. A modified random weather generator was employed 
to downscale the monthly GCM data from the Middle and upper 
reaches of Yellow River basin meteorological stations to a daily 
time scale.

(4) Statistical downscaling effect evaluation

Taylor’s diagram and the skill score (S) were used to evaluate the 
effectiveness of the NWAI-WG statistical downscaling method for each 
climate model. This evaluation approach comprehensively considers 
various meteorological elements’ standard deviation and correlation 
coefficient, providing a holistic assessment of the downscaling perfor-
mance. The calculation method for the skill score is represented by the 
following formula (Taylor, 2001): 

S =
4(l + R)2

(
σf
σr
+ σr

σf

)2

(1 + R0)
2

(5) 

where R is the correlation coefficient; R0 is the maximum value of the 
correlation coefficient. σf and σr are the standard deviations of the time 
series of simulated and observed meteorological elements, respectively. 
S is for Taylor skills. The larger the S value, the better the simulation 
effect of GCM mode.

Interannual Variation skill Score (IVS) was used to evaluate the time- 
scaling accuracy of the NWAI-WG downscaling method for 27 GCM. IVS 
calculation formula is shown in formula (6): 

IVS =

(
STDm

STDo
−

STDo

STDm

)2

(6) 

where STDm and STDo are the inter-annual standard deviations of the 
time series of simulated and observed meteorological elements, 
respectively. The smaller the IVS value, the better the simulation effect 
of GCM mode.

2.2.3. Assessing wheat yield reduction and water productivity
Based on the measured data of winter wheat phenology and yield in 

the Middle and upper reaches of Yellow River basin in the historical 
period, the phenology and yield of winter wheat in the future were 
predicted by the DSSAT model. Specific methods and steps: The 
improved DSSA-CERES-Wheat model was verified according to the 
measured data in the historical period, and the changes in flowering, 
maturity, and yield of winter Wheat in different regions of the Middle 
and upper reaches of Yellow River basin were predicted under different 
scenarios (SSP2–4.5 and SSP5–8.5) in the future period (2022–2050). By 
comparing the relationship between winter wheat phenology and yield 
across different scenarios and regions, the study aimed to uncover the 
growth and development patterns of winter wheat in the Middle and 
upper reaches of Yellow River basin during the future period and assess 
changes in yield from the past to the future.

The rate of increase can be used to observe changes in yield intui-
tively, and the calculation method is presented in formula (7): 

Z =
(
Yj − Yi

)/
Yi × 100% (7) 

where Z is the yield increase rate (%); Yj is the optimal planting date or 
winter wheat yield under the optimal planting date and optimal irriga-
tion scenario in the future period (kg/ha); Yi is the historical winter 
wheat yield (kg/ha).

Based on water productivity (WPc), the efficiency of dry matter 
production per unit of water consumed (i.e., evapotranspiration) was 
analyzed for different regions within the middle and upper reaches of 
the Yellow River Basin under various future scenarios. The specific 
calculation method is presented as follows (Kijne et al., 2003): 

WPc = Y/ET (8) 

Table 2 
Genetic coefficients for the DSSAT-CERES-Wheat model.

Parameters Parameters definition Parameters 
range

Unit

P1V Vernalization sensitivity coefficient stage 
at the optimum temperature

5–65 d

P1D Photoperiod sensitivity coefficient 0–95 %
P5 Thermal time from the onset of linear fill 

to maturity
300–800 ℃ d

G1 Kernel number per unit stem + spike 
weight at anthesis

15–30 No 
g− 1

G2 Potential kernel growth rate 20–65 mg
G3 Tiller death coefficient. Standard stem 

+ spike weight when elongation ceases
1–2 g

PHINT Thermal time between the appearance of 
leaf tips

60–100 ℃ d
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where WPc is water productivity, Y is winter wheat yield (kg/ha), ET is 
the total water consumption during the growth and development of 
winter wheat, calculated according to the water balance (mm).

2.2.4. Strategies for winter wheat production to cope with drought
Based on the precipitation data from 2020 to 2050 under various 

CMIP6 scenarios, the Pearson Type III frequency curve was used to 
identify typical hydrological years for each region in the Middle and 
upper reaches of Yellow River basin. The years corresponding to the 
25 %, 50 %, and 75 % precipitation frequencies for all regional stations 
were classified as wet, normal, and dry years, respectively. The pro-
cedure was as follows: Precipitation data for the 31-year winter wheat 
growing period was first arranged in ascending order. The Pearson Type 
III curve was then applied to fit the precipitation series. By calculating 
the cumulative probabilities associated with different precipitation 
levels, the years corresponding to 50 % and 75 % cumulative proba-
bilities were identified to determine normal and dry years for the future 
period. This study used the Hohai University version of hydrologic 
Pearson Type III curve parameter calculation and plotting software to 
calculate the frequencies associated with different precipitation levels. 
Additionally, the Wuhan University version of hydrologic frequency 
distribution curve fitting software was utilized to draw the hydrologic 
frequency curves.

Sowing date and irrigation are critical factors influencing the growth 
and yield of winter wheat. Identifying the optimal sowing time and 
irrigation practices is essential for efficient production. To address 
drought and enhance yields, determining the optimal planting dates 
under future climate change scenarios and identifying the best irrigation 
strategies for regions based on predicted wet, normal, and dry years are 
crucial.

Winter wheat is typically sown between September and October. 
Based on historical average sowing dates, planting was scheduled every 
five days, including the historical average, five days earlier and later, ten 
days earlier and later, and fifteen days earlier and later, resulting in 
seven planting dates. The improved DSSAT-CERES-Wheat model was 
employed to simulate winter wheat phenology and yield across these 
different sowing dates. By comparing phenological changes, the 
planting date with the highest yield was selected for each region.

Irrigation was necessary during both normal and dry years across the 
three regions delineated using the Pearson Type III distribution. To 
optimize irrigation strategies, we accounted for regional water avail-
ability and irrigation quotas for winter wheat under both climatic con-
ditions. Key factors such as soil moisture and effective root zone depth 
were also considered. Notably, over 95 % of the winter wheat root 
system is confined to the 0–100 cm soil layer. In the middle and upper 
reaches of the Yellow River Basin, soil moisture within this layer typi-
cally ranges from 130 to 160 mm in normal years and decreases to 
100–130 mm during drought years. Among the three regions, Region 1 
exhibited the lowest soil moisture levels, indicating comparatively drier 
conditions.

We developed a range of irrigation scenarios based on the three key 
factors—local irrigation quotas, soil moisture levels, and the root depth 
of winter wheat. These scenarios aim to ensure that, after irrigation, soil 
moisture reaches 70–85 % of the field capacity. This range provides 
sufficient water to support the normal growth of winter wheat 
throughout its development stages and helps prevent yield reduction 
caused by insufficient soil moisture. In Region 1, the irrigation levels 
were set at 40 mm and 70 mm for normal years, and 60 mm and 90 mm 
for dry years. The various irrigation levels were, 40 mm and 60 mm in 
normal years, and 60 mm and 80 mm in dry years for Regions 2 and 3. 
Additionally, irrigation periods were set during the overwintering, 
jointing, and filling stages. Using the border irrigation method, fourteen 
scenarios were developed for normal and dry years (Table S2 and 
Table S3).

2.2.5. Uncertainty analysis
In this study, the combined meteorological data of GCMs and SSPs 

were used to predict the uncertainty of winter wheat yield in the future 
period, and the contribution of SSPs, GCMs, and their interaction to the 
yield was considered by analysis of variance (ANOVA) to analyze the 
uncertainty of the yield forecast from 2022 to 2050. The specific 
calculation process is as follows: 

SST = SSSSPs + SSGCMs + SSGCMs:SSPs (9) 

where SST is the total sum of squares, SSSSPs, SSGCMs, and SSGCMs:SSPs are 
respectively SSPs, GCMs, and the squared variance under their inter-
action. In this study, the average value of the final simulation results of 
27 GCM was used to reduce the impact of uncertainty on the results.

3. Results

3.1. Evaluation of future climate models

The precipitation, Tmax, and Tmin correlation coefficients exceed 0.95 
(Fig. 3). The Tmax shows slightly higher correlation coefficients, ranging 
from 0.97 to 0.98, while the correlation coefficients for precipitation 
and Tmin range from 0.95 to 0.97. The S values range of Tmax Tmin, and P 
were from 0.96 to 0.97, 0.90–0.93, 0.92–0.94, respectively (Fig. 3 and 
Table S4). The S values were all greater than 0.90, which indicate that 
the NWAI-WG statistical downscaling method can effectively perform 
spatial scaling for Tmax, Tmin, and P while meeting accuracy requirements 
for future projections.

3.2. Model parameter adjustment

With the GLUE-estimated genetic coefficients (Table S5), the simu-
lated values of the improved DSSA-CERES-Wheat model for flowering 
and maturation of winter Wheat were consistent with the measured 
values. The RMAE and RRMSE were less than 7.82 %, and most were less 
than 5.00 % (Fig. 4 and Table S6). The RMAE and RRMSE for the DSSAT- 
CERES-Wheat model’s simulation calibration and validation of winter 
wheat yield were reliable, with both metrics remaining below 19.00 %. 

Fig. 3. Taylor plot comparing simulated and observed climate indices from 27 
climate models at winter wheat stations in the middle and upper reaches of the 
Yellow River basin. The dotted green radial line represents the correlation co-
efficient (r) between simulated and observed values for different GCM models. 
The green arc shows the standard deviation of the GCM patterns, while the 
brown arc indicates the skill score (S) for the 27 GCM models.
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It could be seen that the simulation effect of the anthesis period and 
maturity stage was slightly better than that of yield. The improved 
DSSAT-CERES-Wheat model has a better simulation effect on the 
phenological period of regions 1 and 3 than that of region 2, and has the 
best simulation effect on the yield of region 1, which is close to that of 
region 2 and region 3. In general, the improved DSSAT-CERES-Wheat 
model can simulate the growth and development of winter wheat in 
the three regions of the Middle and upper reaches of Yellow River basin, 
and the simulation results are similar. However, the simulation results of 
region 1 are the best, showing that the improved DSSAT-CERES-Wheat 
model can simulate the phenological period and yield of winter wheat.

3.3. Simulation of the growth and development in the future period

3.3.1. Effects of different sowing dates on winter wheat growth and yield
Under the influence of climate change, adjusting the sowing date can 

significantly impact winter wheat’s growth, development, and yield. 
Region 2 has the latest anthesis period with the smallest standard de-
viation, indicating that the improved DSSAT-CERES-Wheat model pro-
duced more consistent anthesis period simulations for this region 
(Fig. 5). In contrast, Region 3 has the earliest anthesis period and the 
largest standard deviation, suggesting greater variability in anthesis 

timing. As the sowing date is advanced or delayed (from the first to the 
last row), the anthesis period changes more significantly than the 
normal sowing date. In region 1, the simulated anthesis period for 
different planting dates ranges between 220 and 235 days after sowing, 
while in Region 2, it spans 230–245 days. Region 3 shows a range of 
about 200–215 days, with an adjustment range of 30 days, indicating 
that flowering date changes less dramatically than sowing date changes. 
Under the SSP5–8.5 scenario, the anthesis period occurs slightly earlier 
compared to SSP2–4.5, suggesting that earlier sowing delays flowering 
while delayed sowing advances it. Based on historical average planting 
dates, the simulated anthesis period across all three regions is shorter 
than the historical average anthesis period. The variation in the anthesis 
period is small and similar in Regions 1 and 3, while region 2 shows 
greater variability. The figure also indicates that the winter wheat 
anthesis period tends to advance from 2022–2030, 2031–2040 and 
further to 2041–2050, suggesting a gradual advancement of flowering 
under climate change. The changes in winter wheat’s maturity period 
are consistent with those observed in the anthesis period (Fig. S1).

Under the SSP2–4.5 and SSP5–8.5 scenarios from 2022 to 2050, the 
improved DSSAT-CERES-Wheat model simulated winter wheat yields 
for seven different planting dates (Fig. 6). Region 2 exhibited the highest 
yield, while Region 1 had the lowest, with Region 3 slightly 

Fig. 4. Correction and verification of winter Wheat phenology and yield by improved DSSA-CERES-Wheat model.
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Fig. 5. The box plot of the winter Wheat anthesis period (ADAP) was simulated by DSAT-CERES-Wheat model with different seeding dates under SSP2–4.5 and 
SSP5–8.5 scenarios in the future period. Each column represents the three different regions, and each row corresponds to a different sowing date. The gray dashed 
line indicates the historical average anthesis period, the red box represents growth and development results under SSP2–4.5, the blue box under SSP5–8.5, with the 
black horizontal line inside the box representing the mean, error bars showing the standard deviation, and black dots indicating outliers. The same as below.
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Fig. 6. The box plot of winter Wheat yield (HWAM) was simulated by improved DSAT-CERES-Wheat model with different sowing dates under SSP2–4.5 and 
SSP5–8.5 scenarios in the future period.
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outperforming region 1. However, the box plot for region 3 was smaller, 
and the error bars were shorter than those for regions 1 and 2, indicating 
that the model produced more consistent yield simulations with less 
variability for region 3. Based on the historical average planting date, 
the simulated average yield for all three regions was higher than the 
historical average yield. Regions 1 and 3 yielded significant variability, 
while the yield in region 2 remained relatively stable. As shown in Fig. 6, 
yields varied significantly with the number of days the planting date was 
advanced or delayed. Under the SSP2–4.5 scenario, the average yield 
across the three regions was generally lower than under the SSP5–8.5 
scenario. However, the average yield for region 1 under SSP2–4.5 was 
higher than under SSP5–8.5 from 2041 to 2050. Overall, winter wheat 
production is expected to increase from 2022 to 2050. The optimal 
planting dates of different regions under SSP2–4.5 and SSP5–8.5 sce-
narios in the future period are shown in Table 3. Based on the optimal 
sowing date and the actual production situation, we set a 7-day sowing 
window 3 days before and 3 days after the optimal sowing date, which 
can be adjusted according to the actual situation.

The change rates of winter wheat anthesis and mature period under 
different scenarios in the future period under the background of climate 
change compared with the historical period, blue represents advance, 
and red represents delay (Fig. 7). The changing rates of anthesis period 
and maturity stage were between − 7.8 %-4.1 % and − 8.1 %-2.8 %, 
respectively. The advance trend was larger than delay, and the maturity 
stage was more advanced than the anthesis period. Region 1 and region 
2 were mostly advanced, and the trend of anthesis and mature period 
under SSP5–8.5 was more evident than that under SSP2–4.5. Region 3 
shows a delay, and the change trend is more evident in the SSP5–8.5 
scenario than in SSP2–4.5. With time, the absolute change rates of 
flowering and maturity in region 1 and region 2 increased, especially the 
change rate of region 2 was about − 6 % from 2040 to 2050 under the 
SSP5–8.5 scenario. The change rates of flowering and maturation in 
region 3 gradually decreased with time, and the change rates of 
phenology from 2022 to 2032 were the largest, especially under the 
SSP5–8.5 scenario, where the change rates of flowering and maturation 
reached 4.1 % and 2.8 %, respectively. Region 1 shows an earlier trend, 
but the blooming and ripening period in 2035 is delayed under SSP5–8.5 
scenario, and the number of days advanced in 2042 and 2044 under 
SSP2–4.5 scenario is the highest. Overall, the change rate of the winter 
wheat anthesis period in the future was greater than that of the maturity 
stage.

The changes in water stress factors affect winter wheat under the 
SSP2–4.5 and SSP5–8.5 scenarios in the future within the context of 
climate change (Fig. 8). The three columns at the top and Middle of the 
figure represent the average values of these water stress factors during 
the historical period. The circle’s left and right sides in the figure 
correspond to winter wheat’s water stress factors in three different re-
gions under the SSP5–8.5 and SSP2–4.5 scenarios, respectively. Region 2 
experiences the highest water stress factor, reaching approximately 
0.65. The water stress factors for regions 1 and 3 are similar, with Region 
1 having slightly lower water stress than region 3 during the historical 
period, around 0.15 and 0.25, respectively. In the future period, which is 
contrary to the historical trend, at about 0.15 and 0.12, respectively. 
From the historical to future periods, the water stress factors in Regions 

1 and 2 show little change, whereas the water stress factor in region 3 
decreases significantly. Over the future period, the water stress factor is 
expected to decline gradually from 2022 to 2050.

3.3.2. Effects of different irrigation scenarios on the winter wheat growth 
and yield

The rainfall corresponding to the average rainfall frequency of 50 % 
and 75 % in the region was found according to the Pearson III curve 
(Fig. S2). The years of normal water and dry years that need irrigation in 
different regions in the future were found according to the rainfall, and 
the specific years are shown in Table S7. Based on the optimal planting 
dates for different scenarios in the future, Fig. 9 illustrates changes in 
winter wheat yield under various irrigation scenarios in normal and dry 
years across different regions. Across different irrigation scenarios, 
yields in dry years were generally higher than in normal years. However, 
under the SSP2–4.5 scenario, region 1 showed higher yields during 
normal than dry years. The yield increase under the SSP2–4.5 scenario 
was greater than that under the SSP5–8.5 scenario, and winter wheat 
yields increased with higher irrigation amounts. In all three regions, the 
highest yields were achieved with irrigation during the overwintering, 
jointing, and filling periods, corresponding to the 14th irrigation sce-
nario in each region in Table S2 and Table S3. Among all the irrigation 
scenarios (1, 2, 3, 8, 9, and 10) shown in the figure, scenarios 2 and 9 
yielded the highest results, highlighting the jointing stage as a critical 
period for water demand in winter wheat cultivation in the Middle and 
upper reaches of Yellow River basin. Overall, irrigation during the 
overwintering, jointing, and filling stages positively influenced the 
growth and development of winter wheat.

The water productivity (WPc) of winter wheat is higher in region 2 
than regions 1 and 3, with average values of approximately 1.50 in re-
gion 2, 1.20 in region 1, and 1.25 in region 3 (Fig. 10). Under the 
SSP2–4.5 scenario, the WPc during drought years in regions 2 and 3 
exceeds that of normal years, while in region 1, the WPc is lower during 
drought years than in normal years. In contrast, under the SSP5–8.5 
scenario, the WPc during drought years is higher than during normal 
years across all three regions. The WPc trends align with projected 
winter wheat yields, indicating that WPc increases as yields increase. 
Among the six irrigation scenarios evaluated (1, 2, 3, 8, 9, and 10), 
scenarios 2, 3, 9, and 10 showed the highest WPc. This finding highlights 
the importance of the jointing and filling stages for water demand in 
winter wheat growth within the Middle and upper reaches of Yellow 
River basin. For optimal irrigation, region 1 requires 70 mm and 90 mm 
of water during normal and dry years, respectively, while Regions 2 and 
3 require 60 mm and 80 mm.

Winter wheat yield and yield growth in the Middle and upper reaches 
of Yellow River basin have been rising from the historical period to the 
future, with the optimal irrigation scenario showing a greater impact on 
yield increase than the optimal planting date (Table S8). In the future, 
the Middle and upper reaches of Yellow River basin’s total yield increase 
rate under SSP2–4.5 scenario (20.62 %) is higher than that under 
SSP5–8.5 scenario (16.32 %). Under the SSP5–8.5 scenario, the yields 
were 18.82 %, 15.69 %, and 14.74 %, respectively. Under the SSP2–4.5 
scenario, yields in regions 2 and 3 increased by over 21.00 %. In the 
Middle and upper reaches of Yellow River basin’s future period, the 
yield increase rate based on the optimal planting date is lower under the 
SSP2–4.5 scenario than under the SSP5–8.5 scenario, at 5.96 % and 
6.35 %, respectively. Conversely, the yield increase rate based on the 
optimal irrigation scenario is higher under the SSP2–4.5 scenario, at 
14.12 % compared to 9.30 % under SSP5–8.5. In general, the total yield 
increase rate of winter wheat in the Middle and upper reaches of Yellow 
River basin is around 18.50 %, and the total yield increase rate under 
SSP2–4.5 scenario is slightly higher than that under SSP5–8.5 scenario, 
which is 20.62 % and 16.32 % respectively.

According to the above results, the sowing date of region 1 in the 
future period should be advanced by 10 days, the sowing window is 
(− 13, − 7), and the irrigation water should be 70 mm and 90 mm at the 

Table 3 
The optimal sowing date and sowing window of the maximum yield in different 
scenarios and regions in the future period.

Region Scene Optimal sowing date Sowing date 
window

Region 
1

SSP2–4.5 The sowing date is 10 days ahead of 
schedule

(− 13，− 7)
SSP5–8.5 (− 13，− 7)

Region 
2

SSP2–4.5 The sowing date is 15 days ahead of 
schedule

(− 18，− 12)
SSP5–8.5 (− 18，− 12)

Region 
3

SSP2–4.5 The sowing date is 15 days ahead of 
schedule

(− 18，− 12)
SSP5–8.5 (− 18，− 12)
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jointing stage and filling stage in normal and dry years, respectively. In 
region 2, the sowing date should be advanced 15 days, the sowing 
window is (− 18, − 12), and the irrigation water should be 60 mm and 
80 mm in jointing and filling periods in normal and dry years, respec-
tively. In region 3, the sowing date should be advanced by 15 days, and 
the sowing window is (− 18, − 12). The irrigation water should be 
60 mm and 80 mm in jointing and filling periods in normal and dry 
years, respectively, to avoid reducing winter wheat production under 
the background of drought in the future and achieve a high and stable 
yield of winter wheat.

4. Discussion

4.1. Influence of sowing date on winter wheat yield in future period

In the context of future climate change, extreme climate (such as 
drought, etc.) will lead to winter wheat yield reduction, an urgent 
problem to solve. We can prevent winter wheat yield reduction by 
adjusting the sowing date, so discussing the influence of sowing date 
change on winter wheat yield is significant. Qiao et al. (2023) modeled 
the optimal sowing date of global winter wheat based on optimality in 
simulated gross primary product. The results showed that mild warming 
promoted early sowing in humid regions but late sowing in arid regions, 
and severe warming led to delayed sowing in most regions. Wu et al. 
(2023) studied winter wheat in the Loess Plateau and showed that 
delayed seeding significantly extended the emergence time and 
decreased tillering number, leaf area index, root biomass, and 
above-ground biomass. The study of Sattar et al. (2023) on winter wheat 
in the Indo-Gangetic plain showed that the planting date significantly 
impacted the phenological duration, and the yield increased with the 
advance of the planting date. The results showed that early sowing of 
winter wheat in the Middle and upper reaches of Yellow River basin 
could improve the yield, and the best sowing date was 10 days earlier 
and, the sowing window was (− 13, − 7) in region 1, and the best sowing 
date was 15 days earlier and the sowing window was (− 18, − 12) in 
region 2 and 3. In addition, early sowing leads to the extension of 
flowering and maturity. In contrast, late sowing leads to the shortening 
of flowering and maturity, which may be because the growth and 
development of winter wheat need to go through the vernalization stage, 
which requires a particular low-temperature duration, about 0 ~ 5 de-
grees, and the low-temperature duration need to be greater than 35 
days. Without the vernalization stage, it cannot enter the heading stage, 
and only vegetative growth can be carried out. Therefore, winter wheat 
sown early has a higher temperature at the beginning of growth and 
needs longer to reach the low temperature in the vernalization stage 
before heading. The vegetative growth time is longer, the accumulated 
nutrients are more, and the yield increases. Therefore, the flowering and 
maturity winter wheat sown early is extended, while the maturity period 
of winter wheat sown late is shortened.

Fig. 7. Changes of the phenological period under SSP2–4.5 and SSP5–8.5 scenarios in the future period.

Fig. 8. Changes of stress factors under SSP2–4.5 and SSP5–8.5 scenarios in the 
future period.
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4.2. Effects of irrigation changes on winter wheat yield in future period

Besides the sowing date, irrigation strategies are critical in deter-
mining winter wheat yields. Studying winter wheat’s key water demand 
periods and developing optimal irrigation strategies to support its 
growth and development is essential. Previous studies have identified 
the jointing stage as a crucial water demand period for winter wheat. Li 
et al. (2024) research on winter wheat in the North China Plain indicated 
that while future climate scenarios may slightly increase irrigation water 
requirements compared to historical periods, the water-sensitive periods 
(recovery, jointing, and anthesis) remain unchanged. Zhang et al. (2022)
used the AquaCrop model to explore optimal irrigation methods for 
winter wheat in northwest China, finding that 90 mm of irrigation 
during the wintering period and varying amounts (0, 30, and 60 mm) 
during the jointing period were optimal for wet, normal, and dry years, 
respectively. Yang et al. (2018) found that soil volumetric water content 
at the jointing stage was related to efficient water-saving irrigation, 

indicating that the early jointing stage is optimal for irrigation. Further 
research on the winter wheat-summer corn rotation system in the North 
China Plain by Li et al. (2023) recommended 165 mm and 90 mm of 
irrigation during the jointing and anthesis stages, respectively. This 
study found that water productivity (WPc) was highest during the 
jointing and filling stages across the three regions of the Middle and 
upper reaches of Yellow River basin, suggesting that irrigation during 
these periods can help mitigate the impact of drought.

4.3. Uncertainty analysis of winter wheat yield

Forecasting winter wheat yields involves uncertainty due to the 
variability of future meteorological data and the inherent limitations of 
the DSSAT-CERES-Wheat model itself. Generally, using two SSP sce-
narios and 27 GCM models as inputs for crop models introduces certain 
uncertainties in predicting winter wheat yield (Wang et al., 2020; Jiang 
et al., 2022). Jiang et al. (2022) analyzed crop models, GCMs, SSPs, and 

Fig. 9. Winter wheat yield under different irrigation strategies with optimal seeding date in future period. The red dotted line represents winter wheat yield under 
the optimal planting date. Blue dots indicate yields for normal years, while purple dots represent yields for dry years, with the size of the dots reflecting production 
levels. The vertical axis (1–14) corresponds to different irrigation treatments outlined (Table S2 and Table S3).
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species distribution models (SDMs), finding that SDMs contributed most 
to uncertainty in winter wheat yield forecasts on the Loess Plateau. 
Wang et al., (2020b) showed that GCMs were the main source of un-
certainty in wheat yield predictions in Australia, while crop models were 
the primary source in China, largely due to differing levels of uncer-
tainty in GCM predictions of rainfall across regions. Additionally, input 
variables such as average temperature, precipitation, and solar radiation 
contribute to uncertainties in wheat yield predictions (Zare et al., 2022; 
Han et al., 2023). In this study, the uncertainty contributions of SSPs and 
GCMs were quantified using ANOVA. The analysis showed that uncer-
tainty from GCMs in predicting winter wheat yield in the Middle and 
upper reaches of Yellow River basin from 2022 to 2050 was greater than 
that from SSPs or the interaction between SSPs and GCMs (Fig. S4). 
However, this study used only the improved DSSAT-CERES-Wheat 
model for yield predictions, which introduces its own set of un-
certainties, potentially leading to errors in yield forecasting.

5. Conclusions

Winter wheat yields in the Middle and upper reaches of Yellow River 
basin are expected to increase with earlier sowing dates. Under the 
SSP2–4.5 and SSP5–8.5 scenarios, the optimal sowing time for Region 1 
is 10 days earlier, with a sowing window of (− 13, − 7), leading to yield 
increases of 6.34 % and 4.47 %, respectively. For Regions 2 and 3, the 
optimal sowing time is 15 days earlier, with a sowing window of (− 18, 
− 12). Overall, the Middle and upper reaches of Yellow River basin yield 
is projected to increase by 5.96 % under the SSP2–4.5 scenario and by 
6.35 % under the SSP5–8.5 scenario compared to historical levels.

The WPc is expected to increase along with winter wheat yield in the 
Middle and upper reaches of Yellow River basin in the future. The WPc 
ranks highest in region 2, followed by region 3, and lowest in region 1, 

mirroring the yield pattern across these regions. The optimal irrigation 
strategy for both normal and dry years involves irrigating during the 
jointing and filling stages, which are crucial for meeting the crop’s water 
needs. Under SSP2–4.5 and SSP5–8.5 scenarios, the optimal combina-
tion of sowing date and irrigation for region 1 resulted in yield increases 
of 18.48 % and 18.82 %, respectively. The optimal sowing and irrigation 
for region 2 increased winter wheat yield by 21.55 % and 15.69 %, 
respectively.

The same irrigation strategy for region 3 increased yield by 21.52 % 
and 14.74 % under SSP2–4.5 and SSP5–8.5 scenarios, respectively. 
Across the Middle and upper reaches of Yellow River basin, the com-
bination of optimal sowing dates and irrigation scenarios under 
SSP2–4.5 and SSP5–8.5 resulted in yield increases of 14.12 % and 
9.30 %, respectively, compared to using optimal sowing dates alone. 
Compared to the historical period, these combined strategies resulted in 
yield increases of 20.62 % and 16.32 % under SSP2–4.5 and SSP5–8.5, 
respectively.
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