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A B S T R A C T

Reliable soil moisture (SM) information underpins agricultural water management, yet large uncertainties 
remain in how long-term SM products capture hydroclimatic extremes. We systematically evaluate five widely 
used datasets—ERA5-Land (land reanalysis), GLEAM4 (satellite-driven water balance), GLDAS-Noah and GLDAS- 
CLSM (land surface models), and MERRA-2 (atmospheric reanalysis)—over China for 1982–2022. Using in situ 
observations, SMAP-L4 satellite data, and historical records of extreme droughts and floods, we assessed reli
ability against ground networks (Spearman ρ), consistency across products (Spearman ρ), and spatial coherence 
with SMAP-L4 (Pearson r). Long-term trends were quantified using the Theil–Sen estimator with the Trend-Free 
Pre-Whitening Mann–Kendall test. Results reveal a consistent divergence among products. MERRA-2, GLDAS- 
Noah, and GLEAM4 indicate widespread wetting, with positive SM trends across 33–75 % of grid cells and wet- 
stress intensification over 24–61 %. In contrast, ERA5-Land and GLDAS-CLSM depict drying, with negative SM 
trends over ~47–51 % of grids, drought intensification across 42–45 %, and declining wet stress in 30–40 %. 
ERA5-Land exhibits the strongest agreement with in situ data (median Spearman ρ = 0.45–0.48) and reliably 
captures benchmark extremes such as the 1998 Yangtze flood and the 2022 drought. MERRA-2 best matches 
SMAP-L4 (Pearson r > 0.76 nationwide) but underrepresents persistent droughts. Collectively, these findings 
establish ERA5-Land as the most reliable long-term benchmark for trend analysis, while underscoring the 
comparative advantage of MERRA-2 for short-term anomaly detection. Significant discrepancies in transitional 
and irrigated zones (e.g., the Loess Plateau and Huang–Huai–Hai Plain) underscore the need for climate- and 
region-specific fusion strategies.

1. Introduction

Agricultural production systems are increasingly vulnerable to 
hydroclimatic extremes, especially in water-limited and irrigated re
gions. The intensification and increased frequency of extreme hydro
climatic events—such as droughts (Chen et al., 2025), floods (Guo et al., 
2025), and heavy rainfall (Shu et al., 2025; Wang, 2025)—have been 
widely observed in recent years (Schroeter et al., 2025; Wang et al., 
2022). These events have caused substantial agricultural disruption, 
economic loss, and infrastructure damage, thereby exacerbating the 
burden on adaptation and risk management systems (Edwards et al., 

2019; Hu et al., 2016; Khan and Islam, 2025). In this context, soil 
moisture (SM) has emerged as a critical variable for monitoring both 
real-time hydrometeorological stress and long-term shifts in land surface 
water availability. Importantly, it also underpins the quantification of 
key hydroclimatic extremes—such as drought and wet stress sever
ity—over time, making its temporal characterization essential for 
climate impact assessments and disaster risk management, and agri
cultural water use planning (Kaur et al., 2017; Řehoř et al., 2023; Zhang 
et al., 2022). Drought is commonly classified into four categories: 
meteorological, agricultural, hydrological, and socio-economic. Meteo
rological drought results from imbalances between precipitation and 
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evapotranspiration, while agricultural drought occurs when SM is 
insufficient to meet crop water requirements (Wang et al., 2025). In this 
study, soil water stress refers to anomalies in either direction relative to 
long-term baselines—deficit (drought stress) or excess (wet stress). 
Although their mechanisms differ, both can severely affect crop growth, 
alter irrigation requirements, and increase agricultural risk.

Reliable and consistent long time-series SM datasets are essential not 
only for detecting hydroclimatic trends and extremes, but also for 
informing agricultural drought management and irrigation decision- 
making. Four primary types of products are commonly used: (1) in- 
situ observations, (2) satellite-based retrievals, (3) land surface model 
outputs, and (4) data assimilation and reanalysis products. In-situ ob
servations offer high point-level accuracy but are spatially sparse and 
temporally discontinuous, which limits their direct use in large-scale 
analyses (Hong et al., 2024). Nevertheless, they are frequently 
employed as ground-truth references for validating remote sensing and 
model-derived SM products (Albergel et al., 2012; Ling et al., 2021; Zeng 
et al., 2015). Satellite datasets, such as ESA CCI SM, offer broad spatial 
coverage but often suffer from retrieval gaps and temporal in
consistencies due to cloud contamination, surface heterogeneity, and 
the limited revisit cycles of passive microwave sensors (Dorigo et al., 
2015, 2017). Meanwhile, model-based and assimilation datasets deliver 
improved spatial-temporal coherence, offering seamless daily coverage 
with high spatial and temporal resolution, which makes them particu
larly useful for evaluating the evolution of drought and wet stress 
severity.

Despite the availability of high-resolution SM datasets from diverse 
sources, substantial inter-product differences persist in the estimation of 
long-term trends and hydroclimatic variability. Numerous studies have 
evaluated the temporal dynamics of SM using satellite, reanalysis, 
assimilation, and land surface model–based products. Global-scale an
alyses have revealed widespread drying trends over the past four de
cades, particularly in North America, northeastern Asia, and North 
Africa, although substantial regional discrepancies remain depending on 
the dataset used (Guan et al., 2023; Liu et al., 2019). Multi-dataset 
comparisons have shown generally high correlations in some regions 
such as northeastern Asia and parts of Australia, but poor agreement in 
others, including China’s irrigated zones, where anthropogenic factors 
such as irrigation significantly influence SM trends (Luo et al., 2021; Qiu 
et al., 2016). Satellite-derived products such as ESA CCI SM have 
demonstrated strengths in detecting spatial drought severity patterns, 
while reanalysis-based products and data assimilation systems like 
GLDAS or MERRA offer better temporal coherence in densely vegetated 
areas (Albergel et al., 2013; Liu et al., 2019). However, inter-product 
trend consistency remains limited, especially in transitional climate 
zones and semi-arid regions, where drying signals are strongest but most 
variable (Dorigo et al., 2012; Rahmani et al., 2016). Some studies also 
report that long time-series SM trends—and their sensitivity to climate 
drivers such as ENSO—vary markedly depending on the chosen dataset 
(Guan et al., 2023; Xu et al., 2025), underscoring the methodological 
challenges in using SM for climate impact attribution. Products such as 
ESA CCI COMBINED and ERA5-Land have been shown to exhibit 
widespread drying trends over nearly half of the global land surface, 
whereas MERRA-2 and ESA CCI ACTIVE tend to indicate more extensive 
wetting. These inconsistencies—partly driven by systematic biases in 
precipitation and temperature forcing—directly affect the magnitude 
and spatial pattern of drought detection, with ESA CCI COMBINED 
capturing stronger drought signals compared to other products (Hirschi 
et al., 2025). While prior studies have advanced our understanding of 
product-specific trends, limited attention has been paid to how these 
differences propagate into hydroclimatic extreme metrics. Notably, the 
long-term evolution of drought and wet stress intensity derived from SM 
products remains insufficiently explored across datasets, revealing a 
critical and understudied dimension of hydroclimatic variability. This 
uncertainty poses challenges for drought risk evaluation, particularly in 
agricultural zones where water decisions depend on SM-derived 

indicators.
To address these gaps, this study systematically evaluates the spatial 

coherence and trend reliability of long time-series SM products for 
detecting drought and wet stress patterns across China—a region char
acterized by complex climatic gradients and frequent hydroclimatic 
extremes. Five widely used, gap-free, high-resolution daily SM datasets 
are analyzed over the period 1982–2022, including ERA5-Land (rean
alysis), GLEAM4 (satellite-driven water balance model), GLDAS_Noah 
and GLDAS_CLSM (land surface model outputs), and MERRA-2 (atmo
spheric reanalysis). This study conducts a comprehensive assessment 
focusing on three key aspects: (1) Comparing the spatial divergence and 
consistency of trends in SM, drought intensity, and wet stress severity 
across multiple products; (2) Quantifying product-specific trend un
certainties using in situ observations from manual and automated 
monitoring stations, supplemented by SMAP L4 satellite data; (3) 
Evaluating performance of each product in identifying extreme hydro
climatic events, using representative summer drought and flood year in 
the Yangtze River Basin. Notably, to ensure statistically robust trend 
estimation across datasets with varying temporal structures, the analysis 
employs a dual-scale approach: annual trends for long time-series but 
coarser-resolution datasets, and monthly trends for high-resolution 
datasets with shorter durations. The findings offer a benchmark for 
evaluating the reliability of SM products in agricultural drought moni
toring and water stress assessments, supporting their use in agro- 
hydrological planning across China.

2. Materials and methods

2.1. Study area

China has been divided into nine major agro-ecological zones based 
on biogeographical, climatic, and agricultural production characteristics 
(Fig. 1) (Han et al., 2024). These zones include: the Northeast China 
Plain (A), the northern arid and semiarid region (B), the 
Huang-Huai-Hai Plain (C), the Loess Plateau (D), the Qinghai–Tibet 
Plateau (E), the middle–lower Yangtze Plain (F), the Sichuan Basin and 
surrounding regions (G), Southern China (H), and Yunnan-Guizhou 
Plateau (I). This delineation reflects major differences in cropping sys
tems, irrigation intensity, and climate exposure. The zonation is adopted 
from the Resource and Environment Science and Data Center of the 
Chinese Academy of Sciences (https://www.resdc.cn).

2.2. Datasets

2.2.1. In-situ observation datasets
This study employed two types of in-situ SM datasets from the China 

Meteorological Administration (CMA): manual observations 
(1980–2010) and automated measurements (2010–2022) (Fig. 1). The 
manual dataset comprises SM records on the 8th, 18th, and 28th of each 
month at five standard depths (10–100 cm), using the gravimetric- 
thermometric method and serving as a national benchmark (Wang and 
Shi, 2019). To ensure statistical robustness, a total of 122 sites were 
selected, each with at least two observations per month and a minimum 
of 20 consecutive years of data, from which annual mean SM was 
derived. Additionally, the automated dataset includes daily 0–10 cm SM 
from 480 stations (Li et al., 2022). Sites with at least two-thirds valid 
daily records per month and at least three consecutive years were 
retained, and monthly averages were computed. For both datasets, only 
surface (0–10 cm) SM was used in the product evaluation. Manual 
gravimetric-thermometric measurements are generally considered 
highly accurate and serve as the national benchmark dataset, but they 
are limited by low temporal frequency and potential 
observer-dependent biases. By contrast, automated stations provide 
higher-frequency daily measurements and much denser spatial 
coverage, yet the sensors are more susceptible to calibration drift and 
environmental noise, leading to larger uncertainties in long-term 
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consistency. These characteristics highlight a trade-off between accu
racy and temporal/spatial coverage in the two observation systems.

2.2.2. Five long time-series SM products
This study uses five widely adopted, long time-series, daily SM 

products: ERA5-Land, GLEAM4, GLDAS_Noah, GLDAS_CLSM, and 
MERRA-2 (Table 1). To ensure temporal consistency, all products were 
temporally aggregated to a daily resolution using the arithmetic mean. 
This study focused on the surface SM layer provided by each product, as 
this depth is the most consistently defined across datasets and is the most 
directly observed or assimilated, whereas deeper layers are generally 
derived through model parameterizations and depend on surface esti
mates. Moreover, the 0–10 cm layer responds most rapidly to precipi
tation and evapotranspiration anomalies, making it a sensitive indicator 
of soil water stress.

ERA5-Land, developed by ECMWF, applies the HTESSEL land surface 

scheme with a four-layer soil structure and Darcy-based water flux 
formulation. It does not assimilate SM observations but is driven by 
high-resolution atmospheric inputs (Hersbach et al., 2020; 
Muñoz-Sabater et al., 2021).

GLEAM4 is a satellite-constrained diagnostic model that reconstructs 
SM based on passive microwave retrievals and partitioned evapotrans
piration using the Priestley–Taylor method. It simulates key hydrologi
cal processes but omits state assimilation (Martens et al., 2017; Miralles 
et al., 2025).

GLDAS, developed by NASA, provides multiple land surface model 
outputs forced by observational data. This study utilizes two configu
rations: the Noah model, based on Richards equation with four soil 
layers and Penman–Monteith evapotranspiration (Zeng and Decker, 
2009), and the CLSM, which uses a hydrologic response unit (HRU) 
approach with shallow top layers and explicit runoff-groundwater 
interaction (Jose et al., 2024). Neither GLDAS version incorporates 

Fig. 1. Study area and regional division scheme used in this study. The nine agro-ecological zones (A–I) represent distinct climate and geographical regions of China, 
including the Northeast China Plain (A), Northern arid and semiarid region (B), Huang-Huai-Hai Plain (C), Loess Plateau (D), Qinghai-Tibet Plateau (E), Middle-lower 
Yangtze Plain (F), Sichuan Basin and surrounding regions (G), Southern China (H), and Yunnan-Guizhou Plateau (I).

Table 1 
Summary of the SM datasets used in this study.

Product Type of product Spatial resolution Temporal resolution Surface soil depth Main reference

ERA5-Land Land-surface reanalysis 0.1◦ Hourly 0–7 cm (Muñoz-Sabater et al., 2021
)

GLEAM4 Hybrid satellite-based water balance mode 0.1◦ Daily 0–10 cm (Miralles et al., 2025)
GLDAS_ 

Noah
Land data assimilation model 0.25◦ 3-hourly 0–10 cm (Rodell et al., 2004)

GLDAS_ CLSM Catchment-based land surface model 0.25◦ 3-hourly 0–2 cm (Rodell et al., 2004)
MERRA− 2 Atmospheric reanalysis 0.5◦ × 0.625◦ Hourly 0–5 cm (Gelaro et al., 2017; Reichle et al., 2017)
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direct SM assimilation.
MERRA-2, also from NASA, is an atmospheric reanalysis system built 

on the GEOS-5 framework. It uses the same Catchment LSM as 
GLDAS_CLSM but includes assimilation of microwave radiances and 
precipitation, targeting improved closure of land-atmosphere water 
budgets (Gelaro et al., 2017; Reichle et al., 2017).

2.2.3. SMAP L4 datasets
SMAP Level-4 (SMAP-L4) is a seamless, 3-hourly SM product at 9 km 

spatial resolution, operational since 31 March 2015. It integrates 
NASA’s CLSM with assimilated satellite brightness temperature, 
improving SM estimates over the satellite-only Enhanced Level-3 prod
uct (Chan et al., 2018). Validation in China shows SMAP-L4 achieves 
lower bias and RMSE, and better captures daily precipitation dynamics 
than ERA5-Land, GLDAS_Noah, and GLEAM (Hong et al., 2024). In this 
study, monthly mean surface SM (0–5 cm) from March 2015 to 
December 2022 was extracted to assess product-level uncertainty.

2.3. Methods

2.3.1. Standardized Soil Moisture Index (SSMI)
To harmonize the scale of multi-source SM products and eliminate 

long-term trends, a three-step normalization and standardization pro
cedure was applied at the grid-cell level over the full time series 
(Konkathi and Karthikeyan, 2024):

First, SM values were rescaled to [0,1] using min–max normaliza
tion: 

SMnorm =
SMt − SMmin

SMmax − SMmin
(1) 

where SMt is the SM at time t, and SMmin, SMmax are the minimum and 
maximum values over the entire time series.

Second, normalized values were fitted to a Beta distribution to derive 
the cumulative distribution function (CDF): 

Pt = FBeta
(
SMnorm,t

)
(2) 

where Pt is the cumulative probability. When Beta fitting failed, the 
empirical CDF (ECDF) was used.

Finally, Pt was transformed into the SSMI using the inverse standard 
normal CDF: 

SSMIt = Φ− 1(Pt) (3) 

This transformation yields SSMI values with zero mean and unit 
variance, facilitating inter-product comparison and integration.

2.3.2. Drought/Wet stress severity
Based on the SSMI values, drought and wet stress indicators were 

defined using ±1 as thresholds for moderate severity (Carrão et al., 
2016). Days with SSMI < –1 indicated dry stress events, while SSMI 
> + 1 indicated wet stress events. The cumulative severity of these 
events was quantified on monthly or annual scales.

Drought severity was calculated as the cumulative excess of SSMI 
values above the dry threshold: 

Idry =
∑

SSMIt>1
(SSMIt − 1) (4) 

Wet stress severity was calculated as the cumulative deficit of SSMI 
values below the wet threshold: 

Iwet =
∑

SSMIt<− 1
( − 1 − SSMIt) (5) 

.

2.3.3. Trend analysis
To assess long-term trends in hydroclimatic variables, the non- 

parametric Theil–Sen estimator (Vannest et al., 2012; Wang and Yu, 
2005) was applied to derive monotonic trends in annual SM, y stress 
intensity, and wet stress intensity at the pixel level.

The slope β is defined as the median of all pairwise slopes between 
time steps: 

β = median
(

Xj − Xi

j − i

)

, 1 < i < j ≤ n (6) 

where Xi and Xj are the values of the variable at years i and j, 
respectively.

To evaluate the significance of these trends, we applied the Trend- 
Free Pre-Whitening Mann–Kendall (TFPW-MK) test (Gavrilov et al., 
2018; Ji et al., 2025; Yue and Wang, 2002). The TFPW-MK method 
removes the influence of serial autocorrelation by first estimating and 
eliminating lag-1 dependence, then applying the Mann–Kendall test to 
the adjusted series. This procedure has been shown to improve the 
robustness of trend detection in hydroclimatic time series compared to 
the classical MK test. Trends were considered statistically significant at 
the 0.05 level. The analysis focused on identifying spatial clusters of 
significantly increasing or decreasing trends to detect regional hydro
climatic shifts. All computations were performed in Python (SciPy and 
pymannkendall libraries), which provide implementations of both the 
Theil–Sen slope estimator and the TFPW-MK test.

2.3.4. Consistency assessment
Temporal consistency across SM products was evaluated using the 

Spearman rank correlation coefficient (Schober et al., 2018; Sedgwick, 
2014). This non-parametric, rank-based method is robust to outliers and 
suitable for assessing agreement in surface SM, drought intensity, and 
wet stress intensity at the pixel level across product pairs.

The Spearman coefficient (ρ) quantifies the monotonic relationship 
between two time series X and Y, based on their ranked values: 

ρ = 1 −

6
∑n

i=1
d2

i

n(n2 − 1)
(7) 

where di =R(Xi)− R(Yi) the rank difference at time step i, and n is the 
number of time steps.

Positive ρ values indicate consistent temporal co-variation, with 
values approaching + 1 reflecting stronger agreement. Negative values 
(ρ<0) suggest inverse relationships, indicating disagreement between 
products.

2.3.5. Product and trend uncertainty assessment
The study first evaluated the consistency of trend variations across 

different SM products using Spearman rank correlation. Two comple
mentary approaches were employed: first, station-level comparisons 
were conducted using in situ observations, with manually recorded SM 
analyzed on an annual basis and automated measurements assessed 
monthly depending on data availability; second, product-specific trends 
were compared against those from the SMAP L4 dataset.

To account for opposing dry and wet signals in SM dynamics, the Net 
Dry–Wet Intensity (NDWI) was introduced to aid in the interpretation of 
hydroclimatic imbalances and to enhance comparability among 
different products. This study further examined the correlation between 
NDWI and either observed or SMAP L4 SM trends to assess the extent to 
which each product captures directional changes in hydroclimatic re
gimes, thereby enabling robust uncertainty evaluation.

The NDWI was introduced as a composite indicator: 

NDWI = Idry − Iwet (8) 

where Idry and Iwet represent cumulative dry and wet stress intensities, 
respectively. A positive NDWI indicates dominance of drying conditions, 
while negative values reflect increasing wet stress.
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2.3.6. Evaluation of major drought and extreme wet events
The capability of SM products in capturing extreme hydroclimatic 

events was assessed by analyzing changes in summer (June–August) dry 
and wet stress intensities across the Yangtze River Basin over the period 
1982–2022. Years exhibiting extreme values in either drought or wet 
stress intensity were identified as representative drought or flood events. 
The performance of each product was then evaluated based on its ability 
to reproduce these historical extremes. According to observational re
cords and documented disaster events, the summer of 1998 is recog
nized as the most severe flood event during the study period, followed by 
2022. In contrast, 2022 also marked the most intense regional drought 
on record, with 2006 and 2011 identified as additional years charac
terized by significant drought impacts. These benchmark years were 
used as reference cases for evaluating the products’ sensitivity and 
consistency in detecting extreme SM anomalies.

3. Results

3.1. Spatial and seasonal heterogeneity in trend patterns across multiple 
SM products

A consistent pattern of hydrological stress response emerges across 
SM products: increases in SM are generally associated with reduced 
drought intensity and enhanced wet stress, while decreases correspond 
to intensified drought and alleviated wet conditions. Nonetheless, 
notable inter-product differences remain in the spatial extent and dis
tribution of these changes, reflecting uncertainties in spatial response 
patterns. (Figs. 2 and 3). MERRA-2, GLDAS_Noah, and GLEAM4 showed 
extensive increases in SM across most provinces, with 75 %, 33 %, and 
46 % of pixels indicating a positive trend, respectively, and fewer than 
20 % of pixels indicating a negative trend (1 %, 15 %, and 17 %). In 
contrast, ERA5-Land and GLDAS_CLSM were dominated by significant 
decreases, with 47 % and 51 % of pixels showing negative trends and 
only 9 % and 18 % showing increases, respectively—primarily across 
semi-humid and humid regions of eastern China. Trends in drought and 
wet stress severity followed similar spatial distributions. In MERRA-2, 
drought severity decreased over 51 % of the domain, while increases 
occurred in only 1 % of pixels; wet stress severity increased in 61 % of 
pixels. GLDAS_Noah and GLEAM4 showed comparable patterns, with 
balanced drought trends (increases in 22 % and 17 %, decreases in 27 % 
and 24 %, respectively) but a clear dominance of increasing wet stress 
(24 % and 41 % of pixels). These changes aligned closely with corre
sponding shifts in SM. ERA5-Land and CLSM exhibited opposite 
behavior. Both datasets showed widespread drought intensification 
(42 % and 45 %) and declining wet stress (40 % and 30 %), consistent 
with observed reductions in SM. Positive SM trends were largely 
confined to the Tibetan Plateau, while negative trends extended across 
central and eastern China.

Seasonal trends, summarized in Table 2, further emphasize inter- 
product divergence. ERA5-Land and GLDAS_CLSM exhibit consistently 
dry conditions across all seasons, reflected by significant declines in SM, 
increased drought severity, and reduced wet stress. In contrast, GLEAM4 
and MERRA-2 show widespread wetting tendencies, with significant 
increases in both SM and wet stress throughout the year. However, only 
MERRA-2 also presents a clear and significant decline in drought 
severity across all seasons. GLEAM 4, by comparison, shows mixed or 
non-significant drought trends despite consistent wetting signals. Noah 
displays greater seasonal variability, with SM increasing significantly in 
spring and winter, drought severity intensifying in summer and autumn, 
and wet stress strengthening in summer and winter. This mixed seasonal 
behavior results in a less coherent trend pattern compared to the other 
products.

Overall, SM products exhibit a consistent relationship between SM 
trends and hydrological stress responses: increases in SM are generally 
associated with reduced drought severity and enhanced wet stress, while 
decreases correspond to intensified drought and reduced wet stress. 

However, substantial differences are observed across products in terms 
of the magnitude and spatial distribution of these changes. MERRA-2, 
GLDAS_Noah, and GLEAM4 predominantly show increasing SM and 
wet stress, whereas ERA5-Land and GLDAS_CLSM are characterized by 
decreasing SM and increasing drought severity. Seasonal trends further 
vary among products, with differences in both the direction and con
sistency of changes across seasons.

3.2. Inter-product consistency in trend patterns

Inter-product agreement in hydroclimatic trend detection varies 
substantially across variables, regions, and dataset combinations 
(Fig. 4). Among all pairs, ERA5-Land and GLDAS_CLSM exhibit the 
strongest overall agreement, particularly for SM and drought severity. In 
eight out of nine regions and at the national scale, their correlation 
coefficients exceed 0.73 for SM and 0.65 for drought severity, indicating 
a consistently high level of inter-product coherence. For wet stress 
severity, higher agreement is observed between GLDAS_Noah and 
GLDAS_CLSM (r > 0.69), and between Noah and MERRA-2 (r > 0.60) in 
several regions. However, these pairs show markedly lower agreement 
in the Qinghai-Tibet Plateau (E), where SM correlations are not statis
tically significant and drought severity correlations remain weak 
(GLDAS_Noah–MERRA-2 r = 0.42). In the same region, ERA5-Land and 
GLEAM4 yield the highest correlation for SM (r = 0.78), while 
GLDAS_Noah and GLDAS_CLSM achieve stronger consistency in drought 
severity (r = 0.60).

The degree of agreement also varies significantly by region. Southern 
China (H) demonstrates the most consistent cross-product performance, 
with correlation coefficients ranging from 0.53 to 0.86 across all in
dicators. The Northeast China Plain (A) follows, with values between 
0.43 and 0.90. In contrast, the Sichuan Basin and surrounding regions 
(G) exhibit pronounced inconsistencies, including multiple product 
pairs with negative correlations, particularly for drought and wet stress 
severity. Nonetheless, a few combinations still show moderate agree
ment in this region. Overall, across SM, drought severity, and wet stress, 
regional differences emerge as a consistent driver of inter-product 
agreement.

3.3. Uncertainty in SM and hydroclimatic stress trends based on station 
observations

Fig. 5a–e show the spatial distribution of Spearman correlation co
efficients between annual SM from five gridded products and observa
tions from manual meteorological stations during 1982–2022. High 
correlations for ERA5-Land and MERR-2 are concentrated in North 
China, Northeast China, and the middle–lower Yangtze River Basin, with 
more spatially continuous coverage. GLEAM4 shows more balanced 
distribution patterns, with moderately dense stations across several re
gions. In contrast, GLDAS_Noah and GLDAS_CLSM have fewer signifi
cant stations and more fragmented spatial coverage, particularly for 
GLDAS_CLSM. Fig. 5f–g summarize product dominance based on the 
highest and statistically significant station-level correlations. MERRA-2 
ranks first at 33.7 % of stations, followed by ERA5-Land at 29.7 %. 
GLEAM4 (13.9 %), GLDAS_Noah (12.9 %), and GLDAS_CLSM (9.9 %) 
dominate fewer stations, with scattered spatial distributions and no 
clear regional clustering. Fig. 5 h compares overall performance across 
products. ERA5-Land and MERRA-2 have the highest median correla
tions and the narrowest interquartile ranges.

Fig. 6a–e show the spatial distribution of Spearman correlation co
efficients between monthly SM from five gridded products and auto
matic in situ station observations. ERA5-Land exhibits higher 
correlations, with spatially coherent clusters across GLDAS_North China, 
the Huang-Huai Plain, Jianghuai, and the Yangtze River Basin. GLEAM4 
shows a more scattered pattern, with moderate correlations in parts of 
eastern China but generally lower values. GLDAS_Noah and 
GLDAS_CLSM display fragmented spatial distributions, with only a few 
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Fig. 2. Theil–Sen slope estimates with significance tested by the TFPW-MK method for annual mean SM, annual drought intensity, and annual wet stress intensity for 
each product. Zero values indicate pixels with no statistically significant trend (p ≥ 0.05).
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areas showing moderate correlations. MERRA-2 presents regional vari
ability, with some stations showing positive correlations, but overall 
lacks spatial continuity or concentrated zones of higher agreement. 
Fig. 6f–g summarize the dominant product at each station based on the 
highest statistically significant correlation. ERA5-Land accounts for the 
largest share (48.4 %), primarily concentrated in North and East China. 
GLEAM4 (17.7 %), GLDAS_Noah (14.8 %), GLDAS_CLSM (10.7 %), and 
MERRA-2 (8.4 %) dominate fewer stations and show more scattered 
spatial distributions. Fig. 6 h presents boxplots comparing the overall 
distribution of correlation coefficients for each product. ERA5-Land 
shows the highest median and narrowest interquartile range, with few 
outliers, reflecting stable performance. GLEAM4 has the lowest median, 
indicating generally weaker correlations across stations.

Fig. 7 presents Spearman correlation density distributions between 
SM products and the NDWI. For manual stations (Fig. 7a), ERA5-Land 
shows the highest median correlation (0.45), with values concentrated 
between 0.4 and 0.6. GLDAS_Noah, GLDAS_CLSM, and MERRA-2 exhibit 
lower medians (0.38–0.39) and broader distributions. GLEAM4 has the 
lowest median (0.20) and the highest proportion of negative values 
(21 %). At automatic stations (Fig. 7b), all products display flatter, more 
dispersed curves. ERA5-Land retains the highest central tendency (me
dian 0.45). GLDAS_Noah, GLDAS_CLSM, and MERRA-2 have similar 

ranges, while GLEAM4 remains the lowest and shows the most pro
nounced left skew.

Overall, results from both manual and automatic stations reveal clear 
inter-product differences in agreement with observations. ERA5-Land 
shows the highest consistency across scales, with strong correlations 
and low dispersion. MERRA-2 performs well annually but is less stable 
monthly. GLEAM4 yields weaker correlations and a higher share of 
negative values. GLDAS_Noah and GLDAS_CLSM display the most frag
mented and variable agreement.

3.4. Uncertainty in SM and hydroclimatic stress trends based on SMAP 
L4 data

SMAP L4-based comparisons reveal clear inter-product differences in 
regional agreement across China (Fig. 8). For SM (Fig. 8a), MERRA-2 
shows the strongest performance, with correlation coefficients 
exceeding 0.76 and full statistical significance in all regions. GLEAM4 
ranks first only in Southern China (H, r = 0.80) but records the lowest 
average agreement overall. ERA5-Land shows moderate yet consistent 
correlations across all regions, all above 0.55 and statistically signifi
cant. GLDAS_CLSM and GLDAS_Noah yield comparatively lower values 
and no regional lead. For NDWI (Fig. 8b), MERRA-2 again ranks highest 

Fig. 3. Percentage of pixels exhibiting statistically significant positive and negative Theil–Sen trends (significance tested by TFPW-MK) in annual SM, drought 
intensity, and wet stress severity for each product during 1982–2022.

Table 2 
Seasonal Theil–Sen slopes with significance tested by the TFPW-MK method for annual mean SM, drought intensity, and wet stress severity derived from five products 
across China. Seasons are defined as spring (March–May), summer (June–August), autumn (September–November), and winter (December–February, including 
December of the previous year).

Trend ERA5-Land GLEAM4 GLDAS _NOAH GLDAS _CLSM MERRA-2

Season

SM Spring − 0.0004*** 0.0003*** 0.0267** − 0.0048*** 0.0006***
Summer − 0.0002** 0.0003*** − 0.003 − 0.0044** 0.0007***
Autumn − 0.0003* 0.0002** 0.0025 − 0.0048** 0.0008***
Winter − 0.0002 0.0002*** 0.0188** − 0.0053*** 0.0007***

Drought severity Spring 910*** − 288 − 276 1712*** − 1625***
Summer 844*** − 15 56** 1077*** − 775***
Autumn 505*** 60 13* 246** − 334***
Winter 73 − 212 95 352*** − 342***

Wet Stress Severity Spring − 458** 506** 76 − 517* 1376***
Summer − 521*** 213*** 216* − 163** 216***
Autumn − 721* 1251** 200 − 462 2137***
Winter − 118* 7** 36*** − 19 112***
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in all nine regions, with correlations ranging from 0.70 to 0.96, all sig
nificant. GLDAS_CLSM follows with values between 0.60 and 0.88. 
ERA5-Land shows a lower national-scale correlation (r = 0.41) but ex
ceeds 0.50 in every region. GLEAM4 drops to 0.20 in the Northern arid 
and semiarid region (B), though it remains above 0.55 elsewhere. 
GLDAS_Noah shows the weakest performance overall, with five regions 
below 0.50 and several non-significant correlations. These results 
identify MERRA-2 as the only product with consistent, high agreement 
with SMAP across both SM and dry–wet variability at the regional scale.

3.5. Evaluation of major drought and extreme wet events in the Yangtze 
River Basin

Fig. 9 presents the summer evolution of drought and wet stress 
severity over the Yangtze River Basin, focusing on five major hydro
climatic events. ERA5-Land identifies 2022 as the year of maximum 
drought severity and 1998 as the peak wet stress year. It also captures 
2006, 2011, and 2020 with clearly separated intensity peaks. GLDAS_
Noah detects drought intensification in 2006, 2011, and 2022, and 
marks 2022 as the driest year. It shows increased wet stress in 1998 and 
2020, but does not distinguish 1998 as the most extreme. GLDAS_CLSM 
reflects elevated drought in 2022 and 2011 but not in 2006. It registers 
wet anomalies in 1998 and 2020, although other years exhibit higher 
wet stress values. GLEAM4 does not show distinct drought signals for 
2006, 2011, or 2022, but registers 2020 as the year with maximum wet 
stress. The 1998 flood event is not clearly represented. MERRA-2 cap
tures 2006 and 2011 drought peaks but does not identify 2022 as the 

most severe year. It reflects substantial wet stress in 1998 and 2020, 
though 1998 is not identified as the maximum. In summary, ERA5-Land 
reproduces all five target events with distinct responses in both drought 
and wet stress. GLDAS_Noah detects all drought years and partially re
sponds to wet events. MERRA-2 and GLDAS_CLSM reflect subsets of 
events. GLEAM4 captures 2020 wet stress but does not resolve major 
drought signals.

4. Discussion

4.1. Divergence rooted in model design

The divergence among SM products across China arises not only from 
observational uncertainty or temporal aliasing, but more fundamentally 
from differences in how each model conceptualizes the soil–atmosphere 
system. Variations in model structure, soil layering, energy balance 
closure, and assimilation strategies drive distinct responses to climate 
forcing and hydrological memory representation. Grasping these design- 
level contrasts is key to interpreting long-term trend discrepancies and 
anomaly sensitivity across datasets ERA5-Land, developed by ECMWF, 
employs the HTESSEL model with a four-layer soil structure and simu
lates water fluxes via Darcy’s law. Its topsoil layer (0–7 cm) dynamically 
interacts with high-resolution atmospheric forcing but does not directly 
assimilate SM (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). This 
setup supports stable trend detection under persistent climate signals 
and aligns closely with manual in situ observations. ERA5-Land also 
reliably captures all benchmark hydroclimatic extremes examined in 

Fig. 4. Spearman correlation heatmaps between product pairs based on regional time series of annual mean SM, annual drought intensity, and annual wet stress 
severity across China from 1982 to 2022. Each panel shows pairwise correlation coefficients and corresponding significance levels for each variable. The sub-regions 
labeled A–I are defined as in Fig. 1.
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this study, indicating strong temporal robustness. In contrast, NASA’s 
MERRA-2 reanalysis, based on the GEOS-5 platform, uses the Catchment 
LSM, which realistically simulates shallow water tables and runoff. It 
directly assimilates microwave brightness temperatures and precipita
tion estimates (Gelaro et al., 2017), enhancing its sensitivity to transient 
anomalies—particularly convective precipitation—but also introducing 
high-frequency noise and trend instability, as seen in automatic station 
data. While MERRA-2 aligns well with SMAP for monthly anomalies, it 
underrepresents persistent extremes such as the 2022 drought and the 
1998 flood.

GLEAM4, a satellite-constrained water balance model, reconstructs 
root-zone moisture using passive microwave inputs (e.g., SMOS, 
AMSR2) and Priestley–Taylor-based evaporation partitioning. It simu
lates canopy interception, snow sublimation, and runoff, but does not 
assimilate state variables (Martens et al., 2017; Miralles et al., 2025). 
This diagnostic framework captures vegetation-mediated SM dynamics 
in the 0–10 cm layer. Its strong response to the 2020 Yangtze flood re
flects high flux sensitivity in wet regions, though it misses major 
droughts (2006, 2011, 2022) and shows the weakest correlation with in 
situ trends, especially in semi-arid zones. Under NASA’s GLDAS frame
work, GLDAS_Noah and GLDAS_CLSM differ in model design. Noah 
features a four-layer structure governed by the Richards equation and 
Penman–Monteith evapotranspiration, while CLSM adopts a hydrologic 
response unit (HRU) scheme with shallow top layers (0–2 cm) and 

explicit modeling of saturated excess runoff (Jose et al., 2024; Rodell 
et al., 2004; Zeng and Decker, 2009). These structural differences shape 
trend expression. While GLDAS-CLSM mirrors ERA5-Land’s long-term 
drying signal, it struggles with benchmark drought representation (e. 
g., 2006) and shows weaker agreement with station and NDWI trends.

While ERA5-Land provides high-resolution (0.1◦) coverage and sta
ble performance in long-term monitoring, uncertainties remain in re
gions with complex topography and sparse in situ constraints, such as 
the Qinghai–Tibet Plateau. In these areas, biases in precipitation forcing 
and limitations in representing frozen soil processes have been reported 
to reduce reliability (Hou et al., 2021; Niu et al., 2021) Similarly, GLDAS 
products offer the advantage of multi-model diversity and physically 
consistent hydrological schemes, but they do not assimilate soil moisture 
observations (Lucas et al., 2020; Rodell et al., 2004) and omit irrigation 
processes. This omission is particularly relevant for heavily irrigated 
zones such as the Huang-Huai-Hai Plain, where anthropogenic water use 
strongly modulates soil moisture dynamics, leading to systematic dis
crepancies relative to observations (Liu et al., 2025; Piao et al., 2010). 
These dataset-specific constraints need to be considered when applying 
SM products in agricultural water stress studies.

4.2. Consistency, memory, and product behavior

Although some SM products exhibit similar signs in long-term trends, 

Fig. 5. (a–e) Spearman correlation coefficients between annual mean SM time series from in situ observations and individual products across all stations. (f) Spatial 
distribution of the product with the highest statistically significant correlation at each station. (g) Frequency distribution of the best-performing product across all 
stations. (h) Box plots showing the distribution of Spearman correlation coefficients between each product and the observed data.
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Fig. 6. (a–e) Spearman correlation coefficients between monthly mean SM time series from automatic in situ observations and individual products across all stations. 
(f) Spatial distribution of the product with the highest statistically significant correlation at each station. (g) Frequency distribution of the best-performing product 
across all stations. (h) Box plots showing the distribution of Spearman correlation coefficients between each product and the observed data.

Fig. 7. Frequency distributions of Spearman correlation coefficients between observed SM and Net Dry–Wet Intensity (NDWI) time series, calculated at each station. 
These distributions are used to assess which product best captures the directional trend in hydroclimatic stress. (a) Correlations between annual mean SM and annual 
NDWI based on manually observed data. (b) Correlations between monthly mean SM and monthly NDWI based on automatically recorded data.
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this agreement does not imply consistent hydrological behavior. For 
example, ERA5-Land and GLDAS_CLSM both indicate drying in North
east China, yet differ substantially in their correlation with short-term 
observations and event-phase responses. These discrepancies stem not 
only from temporal smoothing or spatial resolution but also from dif
ferences in soil depth sensitivity, energy balance closure, and memory 
representation. Such divergences are especially pronounced in transi
tional regions like the Loess Plateau, where rainfall infiltration and 

land–atmosphere feedbacks vary significantly. Prior studies have 
emphasized the role of SM persistence in modulating climate in
teractions (Seneviratne et al., 2010), and our findings highlight the need 
to consider memory characteristics when assessing product consistency 
across timescales. In irrigated regions such as the Huang–Huai–Hai 
Plain, ERA5-Land exhibits a pronounced drying signal that contrasts 
with documented agricultural intensification and irrigation expansion 
(Liu et al., 2025; Piao et al., 2010). This highlights that product-derived 

Fig. 8. Radar plots showing Spearman correlation coefficients between SMAP L4 data and other products based on monthly data from 2015 to 2022. (a) Correlations 
between monthly SM from SMAP and each product. (b) Correlations between SMAP monthly SM and the monthly Net Dry–Wet Intensity (NDWI) derived from each 
product. The sub-regions labeled A–I are defined as in Fig. 1.

Fig. 9. Time series of summer (June–August) drought intensity and wet stress intensity over the Yangtze River Basin for each product. Red vertical lines indicate 
years of documented extreme events. The y-axes represent annual drought severity (a, c, e, g, i) and wet stress severity (b, d, f, h, j), respectively.
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trends may partly reflect model structural limitations in representing 
human–water interactions, rather than purely climate-driven changes.

Among the evaluated products, ERA5-Land shows the highest NDWI 
agreement with manual in situ observations, reflecting its stability in 
trend detection. However, despite its spatially consistent performance, 
its regional correlation with SMAP L4 remains relatively low. In 
contrast, MERRA-2 shows the strongest agreement with SMAP L4 in 
both SM and NDWI, indicating higher sensitivity to regional anomalies 
and hydrological variability. This discrepancy raises a relevant consid
eration: SMAP L4 may face certain limitations when applied to dry–wet 
intensity trend detection over extended time series.

To better capture trend sensitivity and directional asymmetry, the 
Net Dry–Wet Intensity (NDWI) was introduced, which integrates posi
tive and negative anomalies into a unified signal. Unlike traditional 
drought indices that focus solely on deficit conditions, NDWI explicitly 
frames soil water stress in a bidirectional sense, thereby addressing both 
drought and wet stress anomalies relevant for agricultural systems. This 
concept, rooted in SM memory theory (Seneviratne et al., 2006), aligns 
with observed patterns: ERA5-Land exhibits the highest NDWI coher
ence with manual in situ data, while GLEAM and MERRA-2 capture 
more pronounced short-term NDWI fluctuations during hydrological 
extremes but show weaker alignment with long-term directional shifts. 
While NDWI was designed to capture memory effects by integrating 
directional anomalies, its formulation is theoretically supported by soil 
moisture persistence theory, which emphasizes that anomalies in one 
direction (e.g., deficit) alter subsequent land–atmosphere fluxes differ
ently than anomalies in the opposite direction (e.g., excess). By 
combining positive and negative deviations into a unified trajectory, 
NDWI inherently encodes such asymmetric memory, reducing signal 
cancellation that is common in percentile-based indices. Although 
explicit validation of its “memory encoding” (e.g., via lag correlation or 
comparison with established drought indices) was not undertaken here, 
the theoretical foundation lends confidence in its capacity to represent 
soil moisture memory. Further empirical testing remains an important 
next step. These results support NDWI as a robust tool for harmonizing 
SM trend assessment across diverse observational and reanalysis 
datasets.

4.3. Toward climate-aware fusion solutions

Spatial inconsistencies among SM products—particularly in transi
tion zones like the Loess Plateau and North China Plain—underscore the 
need for climate-aware fusion strategies tailored to agricultural water 
management, where reliable soil moisture information is critical for 
crop growth monitoring, irrigation scheduling, and drought early 
warning. These regions are hydrologically complex and agriculturally 
critical, with variable rainfall, high irrigation demand, and strong 
land–atmosphere feedbacks. Divergence among products in such zones 
compromises the reliability of SM-based assessments when applied in 
practice. For instance, models like GLDAS_CLSM underperform due to 
shallow soil depths (~2 cm) and parameter sensitivity, while ERA5- 
Land, though more stable, lacks sub-kilometer resolution needed to 
capture field-scale heterogeneity.

We propose that SM fusion systems designed for agricultural appli
cations should incorporate: (1) Vertical coherence, to integrate surface 
and root-zone information and thereby reduce depth-related uncer
tainty; (2) Memory-informed weighting, to balance long-term stability 
(e.g., ERA5-Land) with short-term anomaly sensitivity (e.g., MERRA-2); 
(3) Region-specific calibration, to explicitly account for irrigation effects 
and crop-specific water requirements in human-managed landscapes; 
(4) Uncertainty-aware ensembles, to formally propagate product 
divergence into drought and wet stress indices and provide confidence 
bounds for decision-making. Machine learning–based downscaling of
fers potential to address spatial mismatches (e.g., SMAP vs. coarse 
products), but requires denser in situ networks than are currently 
available (Karthikeyan and Mishra, 2021). In the meantime, ensemble 

fusion—combining ERA5-Land’s trend fidelity, GLEAM4’s anomaly 
detection, and MERRA-2’s radiance sensitivity—can enhance robust
ness. The use of physically meaningful indices such as NDWI further 
strengthens comparability and interpretability across products. Such 
fusion frameworks would not only improve technical consistency but 
also provide more actionable support for agricultural water manage
ment under a changing climate.

5. Conclusion

This study provides a comprehensive benchmark evaluation of five 
widely used long time-series SM products—ERA5-Land, GLEAM4, 
GLDAS_Noah, GLDAS_CLSM, and MERRA-2—across China over the 
period 1982–2022. By integrating in situ observations, SMAP-L4 satel
lite data, and records of major drought and flood events, we systemat
ically assessed product reliability, spatial consistency, and their ability 
to capture hydroclimatic extremes relevant for agricultural water stress 
monitoring.

Our results highlight clear divergences: MERRA-2, GLEAM4, and 
GLDAS_Noah indicate widespread wetting, while ERA5-Land and 
GLDAS_CLSM depict drying signals. Among the products, ERA5-Land 
demonstrates the most reliable long-term trend detection and consis
tent agreement with manual in situ observations, making it the preferred 
benchmark for multi-decadal monitoring. In contrast, MERRA-2 shows 
the strongest agreement with SMAP-L4, reflecting its strength in short- 
term anomaly detection despite systematic wetting biases. These com
plementary characteristics underscore that no single product can fully 
capture the complexity of SM variability across transitional and irrigated 
regions such as the Loess Plateau and Huang–Huai–Hai Plain.

Importantly, this evaluation reveals dataset-specific advantages and 
constraints that should be carefully considered in agricultural applica
tions. While the study provides a robust framework for benchmarking, 
several limitations remain. Specifically, our analysis focused on surface 
(0–10 cm) SM rather than the root zone, did not explicitly incorporate 
irrigation practices or crop-specific thresholds, and relied on a relatively 
short validation period with SMAP compared to the multi-decadal re
cord. These factors may influence the direct transferability of findings to 
operational agricultural water management.

Despite these limitations, the study delivers three key contributions: 
(1) it establishes a systematic benchmark of consistency and divergences 
across widely used SM datasets, (2) it introduces the Net Dry–Wet In
tensity (NDWI) as a complementary metric for capturing asymmetric 
drought and wet stress signals, and (3) it identifies priority regions and 
processes where product improvement and fusion are most needed. 
Taken together, these findings provide an essential foundation for 
advancing SM applications in agricultural water stress monitoring, and 
point toward future improvements through root-zone integration, 
irrigation-aware modeling, and uncertainty-aware ensembles tailored to 
agro-climatic contexts.
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