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A B S T R A C T

The Tibetan Plateau (TP) grasslands, the world’s largest alpine ecosystem and highest altitude pastoral region, 
are particularly susceptible to climate change and grazing activities. These alpine grassland ecosystems are 
experiencing rapid warming, altered precipitation patterns, and changing grazing pressure. However, the relative 
contributions of climatic factors, CO2 enrichment, and grazing, and their interactions, to carbon dynamics in 
these ecosystems remain poorly quantified, which limits our understanding of how these factors affect carbon 
cycling and feedbacks of alpine ecosystems. Using the process-based biogeochemical model Biome-BGCMuSo 
integrated with a dynamic grazing module, we conducted multi-scenario simulations to isolate the individual 
and interactive effects of environmental and anthropogenic factors on carbon dynamics of the TP grasslands over 
the past 40 years. The results demonstrated that precipitation was the dominant factor in 67.9 % of TP grass
lands. Precipitation promoted vegetation growth, increased net primary productivity (NPP) (positive contribu
tion of 54.6 %), enhanced soil carbon inputs (56.6 %), and ultimately drove increases in total carbon (TOTC) 
(53.1 %). On average, warming alone reduced NPP (negative contribution of − 4.6 %) and TOTC (− 2.7 %), 
highlighting its negative impact on carbon stocks. However, when warming occurred with increased precipita
tion, the combined positive effect on carbon dynamics was found to be more pronounced than that of precipi
tation alone. This emphasizes the significant interactive effect of temperature and precipitation, where their 
combined influence enhances carbon sequestration beyond a simple additive response. The effects of CO2 
enrichment, and its interaction with climate change, were both positive and significant, resulting in increased 
carbon sequestration. Although changes in grazing intensity had a detrimental effect on NPP and TOTC, their 
impact was comparatively limited. Under the future warming and wetting trend on the TP, alpine grasslands 
have the potential to sequester more carbon as increasing precipitation, and the interactive effects of warming 
and wetting, continues to enhance plant growth.
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1. Introduction

The Tibetan Plateau (TP), with an average altitude of over 4000 m, is 
characterized by low temperature, low atmospheric pressure and high 
solar radiation (Ganjurjav et al., 2018). These environmental conditions 
are critical in shaping the ecological dynamics of the TP. In particular, 
the TP plays a pivotal role in the global carbon cycle due to its high 
carbon density and large area, as evidenced by its substantial soil 
organic carbon (SOC) estimate of 36.6 Pg C (1 Pg = 1015 g) (Chen et al., 
2020; Ding et al., 2019). Covering an area exceeding 60 % of the TP, the 
grasslands constitute the most extensive alpine ecosystem in the world 
(Miehe et al., 2014; Zhou et al., 2024). For millennia, these grasslands 
have constituted the primary source of pasture for Tibetan communities, 
thereby establishing the TP as a crucial pastoral region within China 
(Huang et al., 2017; Zhu et al., 2023a). In addition to their role in sus
taining local livelihoods, the grasslands of the TP function as a carbon 
sink, exhibiting a persistent and potentially enhanced capacity for car
bon sequestration (Wang et al., 2023; Wei et al., 2021; Zheng et al., 
2023). This underscores the vital function of grasslands of the TP in the 
mitigation of climate change and in the implementation of carbon 
management strategies within this ecologically sensitive region.

The carbon cycle processes on the grasslands of the TP are influenced 
by a number of factors, including atmospheric CO2 enrichment, changes 
in the climate, and human activities (Dong et al., 2020; Wang et al., 
2022; Zhu et al., 2016). The concentration of CO2 in the global atmo
sphere has been rising continuously, reaching 419.3 parts per million 
(ppm) by 2023 (Friedlingstein et al., 2023). Elevated CO2 concentrations 
can stimulate photosynthesis in plants, leading to enhanced growth rates 
and biomass production, a phenomenon known as the CO2 fertilization 
effect (Wang et al., 2020). Over the last several decades, there has been a 
significant climatic shift in the TP, characterized by warming and 
increased precipitation (Duan and Xiao, 2015; Wang et al., 2018). The 
mean annual air temperature of the TP has been observed to exhibit a 
significant increase over the period between 1980 and 2018. A synthesis 
of data from multiple sources, including observations and ten gridded 
air temperature products, indicates that the rate of this increase is 0.45 
± 0.09 ◦C decade− 1 (based on observations), and 0.24 ± 0.10 ◦C deca
de− 1 to 0.48 ± 0.10 ◦C decade− 1 (based on different gridded products) 
(Peng et al., 2021b). From 1961 to 2012, precipitation exhibited a 
general increase at a rate of 5.07 mm decade− 1, with a trend that varied 
across seasons and exhibited notable spatial heterogeneity (Wang et al., 
2018). In addition to atmospheric CO2 enrichment and climatic changes, 
anthropogenic influences have also impacted the alpine grasslands. 
There was a 16.1 % reduction in human activity intensity on the TP 
between 2000 and 2017, which can be attributed to the implementation 
of recent ecological conservation policies (Li et al., 2021c). Grazing is 
the dominant human activity on the TP. This makes it a key indicator for 
assessing the overall intensity of anthropogenic impacts on grassland 
ecosystems (Huang et al., 2016). The dynamics of carbon in grasslands 
are influenced by a combination of these natural and anthropogenic 
factors. These influences are characterized by complex interactions that 
cannot be accurately represented by simple additive effects (Fang et al., 
2019). Consequently, a major challenge remains in determining the 
relative contributions of these drivers and understanding their spatial 
heterogeneity across the TP (Zhu et al., 2023b). The dominant driver of 
grassland carbon dynamics on the TP remains unclear. For instance, Shi 
et al. (2023) suggested that temperature and precipitation are the pri
mary controlling factors, while Zhao et al. (2022) suggested that grazing 
plays a more significant role. The absence of a quantitative analysis of 
multi-factor interactions has hindered a mechanistic understanding of 
regional carbon sink dynamics. The controversy stems from the lack of 
quantification of multi-factor interactions, particularly the interactive of 
climatic factors (temperature and precipitation) and CO2 fertilization, 
which has not been clearly disentangled. In order to develop effective 
carbon sequestration management policies for TP grasslands under the 
influence of multiple environmental drivers, it is crucial to develop 

modelling approaches to isolate and quantify the individual and inter
active effects of climate change, CO2 fertilization, and grazing activities 
on carbon dynamics.

Frequently employed methodologies to evaluate the effects of 
climate change and human activities on alpine grasslands at the regional 
scale are traditional statistical analyses and the Residuals-Trend model 
(Li et al., 2018a). Traditional statistical analyses employ remote sensing 
data, climate data, and socio-economic statistics for the quantitative 
assessment of the impact of climate change and human activities on 
grassland ecosystems. The interrelationships between climate factors, 
human activities and vegetation indices are investigated through the 
application of analytical techniques such as correlation analysis, partial 
correlation analysis and, generalized linear models (Li et al., 2018b; 
Xiong et al., 2021; Yu et al., 2021). However, the spatially heteroge
neous impacts of human activities on alpine grasslands cannot be fully 
captured by spatial socio-economic statistics (Li et al., 2018a). More
over, the majority of analogous statistical analyses have not incorpo
rated CO2 fertilization as an independent variable in their assessments. 
Another commonly employed approach is the Residuals-Trend models, 
used in studies of climatic and anthropogenic factors on alpine grass
lands, particularly on the TP (Huang et al., 2016; Pan et al., 2017; Wang 
et al., 2016; Zhou et al., 2024). The Residuals-Trend model typically 
comprise two models: one for calculating potential vegetation growth 
and the other for calculating actual vegetation growth. Actual vegeta
tion growth can be simulated using e.g. the Carnegie-Ames-Stanford 
Approach (CASA) model with remote sensing data (Zhou et al., 2024). 
Potential vegetation growth can be simulated by process-based models 
(Chen et al., 2014). The impact of human activities can be inferred by 
contrasting actual and potential vegetation growth. The Residuals-Trend 
model assumes that potential vegetation growth is exclusively driven by 
climate change. The Residuals-Trend model has inherent limitations, 
including discrepancies between the two models. These discrepancies 
contribute to the uncertainty of the results of the assessment. Moreover, 
the Residuals-Trend model is only applicable to retrospective analyses of 
vegetation dynamics. Thus, it is unable to assess the impacts of climate 
change and anthropogenic activities on carbon sequestration potential 
or to predict future ecological changes. Thus, current approaches are 
constrained by two main limitations: (1) an inadequate representation of 
CO2 fertilization and grazing impacts (either due to the omission of 
grazing modules or using coarse-resolution socioeconomic data), and (2) 
a focus on vegetation dynamics which fails to account for the underlying 
mechanisms of carbon sequestration.

In contrast to the aforementioned methods, process-based ecosystem 
models, validated against field observations, provide a more reliable 
approach for evaluating the impacts of CO2 fertilization, climate change, 
and human activities on alpine grasslands. Using multi-scenario simu
lations enables to isolate the effects of individual factors and their in
teractions, as well as to elucidate the spatial–temporal patterns of 
carbon dynamics in response to these factors (Chang et al., 2016; Zhu 
et al., 2023b). These models facilitate a comprehensive analysis of 
various environmental and anthropogenic factors at the regional scale, 
offering valuable insights into their complex interactions with 
ecosystem dynamics (Sitch et al., 2024). Such analyses are particularly 
relevant for the grasslands of the TP, where grazing is a dominant 
anthropogenic influence (Huang et al., 2016). They can inform the 
selecting grazing-related indicators and the determination of their 
weights within ecological assessment frameworks. However, since many 
current ecosystem process-based models do not include a grazing 
module, grazing effects on alpine grassland ecosystems cannot be 
conceptualized, parameterized, and quantified (Zhu et al., 2022). In this 
study, we employed a process-based biogeochemical model, Biome- 
BGCMuSo, which has been specifically enhanced with an improved 
phenological model for the TP (Zheng, 2022; Zheng et al., 2022). 
Further, we combined the Biome-BGCMuSo model, integrated with a 
dynamic grazing module, with our 0.1◦ spatial data on grazing intensity, 
enabling us to quantitatively assess grazing impacts on carbon dynamics 
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of alpine grasslands on the TP (Hidy et al., 2012). Then, the Biome- 
BGCMuSo model was used to assess the relative contributions of 
different environmental factors to the carbon dynamics of grasslands on 
the TP by designing a series of simulation scenarios, overcoming the 
limitations of traditional single-factor analysis approaches to isolate 
multifactorial interactions. Therefore, the objective of this study was (1) 
to quantify the individual and interactive contributions of climatic 
drivers (i.e. precipitation and temperature changes), CO2 fertilization, 
and grazing activities to carbon dynamics in the grasslands of the TP; 
and (2) to generate regional-scale maps illustrating the spatial hetero
geneity of these dominant environmental drivers, providing insights into 
their varying influence across the TP grasslands.

2. Methods and datasets description

2.1. Study area

The Tibetan Plateau (TP), also referred to as the Qinghai-Tibetan 
Plateau, has an average altitude exceeding 4000 m, making it the 
highest plateau on Earth. Most of the annual precipitation occurs during 
the summer months, and there is a gradient of annual precipitation sums 
towards the southeast, from a minimum of less than 100 mm to a 
maximum of more than 700 mm (Yang et al., 2010). 54 % of the region 
has an annual precipitation below 400 mm (Peng et al., 2021a). The 
mean annual temperature on the TP ranged from − 15 ◦C to 5 ◦C, with 
67 % of the area experiencing annual temperatures below 0 ◦C (Peng 
et al., 2021a; You et al., 2013). Different types of grasslands can be 
found based on the precipitation gradient, including alpine meadows in 
the east (characterized by a semi-decomposed residual turf with tightly 
interwoven root mats) and alpine steppes in the west and middle 
(characterized by grasses and shrubs that are extremely cold and 
drought-tolerant) (Feng and Squires, 2020) (Fig. 1). The TP is home to a 
significant number of livestock, which rely on the region’s grasslands as 
a source of sustenance. The number of large livestock, sheep, and goats 
in Qinghai Province (hereafter referred to as Qinghai) and Tibetan 
Autonomous Region (hereafter referred to as Tibet) reached 12.02 
million, 19.07 million, and 5.67 million in 2017, respectively (Li et al., 
2021a).

2.2. Model description

This study employed Biome-BGCMuSo (version 6.1), an enhanced 
version of the Biome-BGC model, to simulate the storage and exchange 
of water, carbon, and nitrogen among the vegetation, litter, and soil 

components of terrestrial ecosystems (Hidy et al., 2016). The Biome- 
BGCMuSo model simulates ecological processes on a daily time step, 
driven by key meteorological inputs including daily maximum and 
minimum temperatures, precipitation, solar radiation, and VPD. In 
comparison to Biome-BGC, Biome-BGCMuSo incorporates a number of 
structural enhancements, including the replacement of the single-layer 
soil module with a multilayer soil module and the incorporation of a 
soil moisture-dependent senescence module. Furthermore, the model 
provides a variety of management modules for cropland, forest, and 
grassland ecosystems, enabling more precise simulations of human ac
tivities (Hidy et al., 2022). The grazing module quantifies plant material 
consumption based on the key parameter of stocking rate. It also ac
counts for biomass redistribution through excretal returns to the litter 
pool. The detailed methodology for calculating grazing effects and 
biomass fluxes was presented in Hidy et al. (2012). Since the grasslands 
on the TP are located in alpine conditions, capturing their seasonal 
dynamics is challenging (Sun et al., 2017a). In order to enhance the 
simulation of vegetation seasonal growth dynamics, new phenological 
models were incorporated into Biome-BGCMuSo. Additionally, param
eters were optimized using a particle swarm optimization (PSO) algo
rithm, calibrated against remotely-sensed dates for the start and end of 
the growing season (Zheng et al., 2022). The spin-up simulations of the 
Biome-BGCMuSo were run for a maximum of 3200 years, and the 
transient simulations for 240 years in this study. For the analysis of 
interannual variability, net primary productivity (NPP, g C m− 2 a− 1) was 
output as an annual value. SOC (g C m− 2), vegetation carbon (VEGC, g C 
m− 2) and litter carbon (LTRC, g C m− 2) were derived from daily output 
values and averaged over the year. The aboveground biomass (AGB, g C 
m− 2) was extracted on 15 August, representing the peak of the growing 
season. All these variables were produced at a spatial resolution of 0.1◦.

2.3. Model input data

To drive the Biome-BGCMuSo model, we used several datasets 
including meteorological, soil, topographic and grazing data. (a) Mete
orological data: Daily regional meteorological variables, including pre
cipitation, shortwave radiation, and daily minimum, maximum, and 
mean temperatures were obtained from the China Meteorological 
Forcing Dataset (CMFD) (He et al., 2020), covering the period from the 
period from 1979 to 2018 at a spatial resolution of 0.1◦. The daily 
photoperiod and vapor pressure deficit (VPD) were calculated using the 
MTCLIM model (Bohn et al., 2013). (b) Soil texture data, including the 
percentages of sand, silt, and clay, and pH values, were derived from the 
China Soil Characteristics Dataset (2010) (Shangguan et al., 2012). (c) 
Elevation data were obtained from the Shuttle Radar Topography 
Mission (SRTM) v4.1 Digital Elevation Model (DEM). (d) Pasture dis
tribution and grazing intensity data: We used the altitude division 
criteria proposed by Wang et al. (2010) for seasonal pastures in eight 
prefecture-level divisions in Qinghai Province (hereafter referred to as 
Qinghai). In the six prefecture-level divisions in the Tibetan Autono
mous Region (hereafter referred to as Tibet), we dynamically adjusted 
the altitude criteria for pasture division in the cold and warm seasons to 
ensure that the final distribution of seasonal pastures is consistent with 
the pasture area ratio in the cold and warm seasons as determined by the 
comprehensive scientific expedition team of the Qinghai Tibet Plateau, 
Chinese Academy of Sciences (1992). Distribution of pastures in the cold 
and warm seasons in Xinjiang Autonomous Region (hereafter referred to 
as Xinjiang) was obtained from Zhu et al. (2022). Since there are no 
altitude division criteria for Sichuan (hereafter referred to as Sichuan), 
Yunnan Province (hereafter referred to as Yunnan), and Gansu province 
(hereafter referred to as Gansu), the nearby regions of Tibet and Qinghai 
were used as a reference for determining pasture distribution in the cold 
and warm seasons. The distribution of summer pasture and winter 
pasture on the TP was mapped using area ratios of different pasture 
types in alpine meadows or alpine steppes within the 0.1◦ grid (Fig. S1). 
The Gridded Livestock of the World (GLW3) database (Gilbert et al., 

Fig. 1. The land cover types on the Tibetan Plateau (TP), extracted from the 
Vegetation Maps of China at a scale of 1:1000000.
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2018) was interpolated and adjusted using livestock numbers from a 
variety of regional statistical yearbooks, along with sequence data of 
livestock number at county level on the Tibetan Plateau and the data on 
livestock products from the Tibetan Autonomous Region, obtained from 
the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/). 
The Supplementary Text S1 and Figs. S2, S3, S4 presents more detailed 
information about the process of generating grazing intensity data.

2.4. Model evaluation

The performance of Biome-BGCMuSo was evaluated by comparing 
model output to observed and derived data, using a combination of AGB, 
NPP, and SOC. The field-observed AGB was measured at 115 sites across 
the TP during the peak vegetation growth period from late July to mid- 
August 2015. The plant samples were sun-dried in the field and subse
quently oven-dried in the laboratory at 65 ◦C until a constant weight was 
achieved. The dry matter AGB was converted to units of g C m− 2 using a 
conversion factor of 0.45 (Sun et al., 2017b). The spatial distribution of 
the sampling sites, which span different aridity gradients across the TP 
and are highly representative of the region, can be found in Sun et al. 
(2019). Specifically, 66 sampling sites are located in alpine steppe, and 
49 sampling sites are located in alpine meadow (Fig. S5). Regional-scale 
AGB data from Zeng et al. (2019) were used to validate the Biome- 
BGCMuSo model at the regional level. These data were monitored by 
a random forest (RF) algorithm, incorporating 256 field-observed AGB, 
topographical data, meteorological data (temperature and precipita
tion), and remote sensing vegetation indices. The spatial AGB data at a 
resolution of 1 km × 1 km were aggregated to 0.1◦ × 0.1◦ resolution by 
averaging for model use. Annual NPP estimates were obtained from the 
MODIS NPP dataset (MOD17A3H) at a spatial resolution of 500 m 
(Running and Zhao, 2015), enabling consistent evaluation of ecosystem 
productivity across the TP. SOC was obtained from the National Tibetan 
Plateau Data Center (https://data.tpdc.ac.cn/) as a gridded dataset. It 
was generated by using a RF algorithm to generate gridded maps of 
carbon stocks across the region at a spatial resolution of 5 km (Han et al., 
2022). The input to the RF algorithm was 7196 sample plots, collected 
from the 1980 s to 2020 and encompassing a diverse range of soil types 
and ecological conditions. The NPP and SOC datasets were aggregated to 
a 0.1◦ × 0.1◦ resolution by averaging, thus enabling comparison with the 
model outputs. To further assess the spatial patterns of the model sim
ulations, we incorporated the aridity zones, which are defined based on 
the aridity index (AI): arid (AI < 0.20), semi-arid (0.20 ≤ AI < 0.50), dry 
sub-humid (0.50 ≤ AI < 0.65), and humid (AI ≥ 0.65), enabling the 
differentiation of results across varying aridity levels (Fig. S6). The 
Aridity Index was sourced from the Global Aridity Index and Potential 
Evapotranspiration (ET0) Climate Database v2 (Trabucco and Zomer, 
2019).

In order to evaluate the performance of the model simulations, two 
commonly used evaluation measures are employed: the coefficient of 
determination (R2) and the root mean square error (RMSE). These are 
defined below: 

R2 =

∑n
i=1(Si − O)

2

∑n
i=1(Oi − O)

2 (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(Oi − Si)

2

/

n

√
√
√
√ (2) 

where Si and Oi represent the ith simulated values of AGB from the 
Biome-BGCMuSo simulations and the corresponding field-observed 
values, respectively. For regional-scale evaluation, Si represents the ith 
simulated NPP or SOC value from the Biome-BGCMuSo simulations, 
while Oi represents the corresponding MODIS NPP or SOC value moni
tored by a RF algorithm, serving as the observed data. O is the mean of 
observed values, and n denotes the total number of observations.

2.5. Factorial experiments and contributions of each driver to carbon 
dynamics

In order to assess the relative contributions of various environmental 
factors to AGB, NPP, SOC, VEGC, LTRC, and total carbon (TOTC, defined 
as the sum of SOC, VEGC, and LTRC), a series of simulation experiments 
under different scenarios were conducted (Table 1). Furthermore, factor 
analysis was employed to disentangle both the individual and interac
tive effects of multiple environmental drivers (Zhu et al., 2023b). The 
eight distinct scenarios designed for this analysis were as follows: (1) 
SOVERALL simulates carbon dynamics under actual environmental con
ditions, including climate change, atmospheric CO2 enrichment, and 
changes in grazing intensity. (2) SCO2fert represents a scenario where the 
concentration of CO2 is the sole variable, while all other climate factors 
and grazing intensity are held constant. (3) SCLIM simulates climate 
change while maintaining CO2 levels and grazing intensity at their 1979 
baseline. (4) SCO2CLIM represents a scenario in which only the grazing 
intensity remains constant and other climate factors and CO2 levels 
change. (5) SPREC represents a scenario where precipitation is the sole 
variable, while temperature, grazing intensity, and CO2 levels are held 
constant. (6) STEMP represents a scenario where only temperature 
changes (including mean, maximum, and minimum values), while pre
cipitation, grazing intensity, and CO2 levels are held constant. (7) 
SGRAZING represents a scenario where only the grazing intensity changes, 
while other climate factors and CO2 are held constant. (8) SCONTROL 
represents a scenario where the grazing intensity, climate factors, and 
CO2 levels are held constant. The changes in AGB, NPP, and SOC were 
determined by comparing the mean simulated values corresponding to 
the periods 1999–2018 and 1979–1988. The specific formulae are as 
follows: 

OVERALLeffect = VAR1999-2018_OVERALL − VAR1979-1998_OVERALL − CTRLeffect

(3) 

TEMPeffect = VAR1999-2018_TEMP − VAR1979-1998_TEMP − CTRLeffect (4) 

PRECeffect = VAR1999-2018_PREC − VAR1979-1998_PREC − CTRLeffect (5) 

CO2ferteffect = VAR1999-2018_CO2fert − VAR1979-1998_CO2fert − CTRLeffect (6) 

CLIMeffect = VAR1999-2018_CLIM − VAR1979-1998_CLIM − CTRLeffect (7) 

CO2CLIMeffect = VAR1999-2018_CO2CLIM − VAR1979-1998_CO2CLIM − CTRLeffect

(8) 

GRAZINGeffect = VAR1999-2018_GRAZING − VAR1979-1998_GRAZING − CTRLeffect

(9) 

CO2 ↔ CLIMeffect = CO2CLIMeffect − CLIMeffect − CO2ferteffect (10) 

PREC ↔ TEMPeffect = CLIMeffect − TEMPeffect − PRECeffect (11) 

CTRLeffect = VAR1999-2018_CONTROL − VAR1979-1998_CONTROL (12) 

where VAR refers to simulated AGB, NPP, and carbon stocks; the 
interactive effects between climate and CO2 change are denoted by 
CO2 ↔ CLIMeffect; the interactive effect between precipitation and tem
perature are denoted by PREC ↔ TEMPeffect. The first part of the VAR 
suffix signifies the temporal duration (e.g., 1979–1998), whereas the 
latter part specifies the specific experimental scenario (Table 1).

The relative contribution (RC) of each driver to the total change in 
AGB, NPP, and carbon stocks can be determined with the following 
equation: 

RCi =
Effecti

∑6
j=1

⃒
⃒
⃒Effectj

⃒
⃒
⃒
× 100% (13) 
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where Effecti denotes the individual contribution of driver i (the PRE
Ceffect, TEMPeffect, CO2ferteffect, GRAZINGeffect, PREC ↔ TEMPeffect, and 
CO2 ↔ CLIMeffect). The sign of RCi indicates the direction of its contri
bution to changes in AGB, NPP, and carbon stocks: a positive value in
dicates an increase in these variables, while a negative value indicates a 
decrease in these variables.

3. Results

3.1. Performance evaluation of Biome-BGCMuSo

The Biome-BGCMuSo model was validated against the previously 
described datasets of AGB, NPP and SOC (see Section 2.4 for details). 
The comparison to field-observed AGB demonstrated moderate agree
ment, with an R2 of 0.53 and a root mean square error (RMSE) of 38.37 
g C m− 2 (Fig. 2). The Biome-BGCMuSo model demonstrated a better 

performance in capturing regional AGB variability, achieving a higher 
R2 of 0.65 and a reduced RMSE of 29.42 g C m− 2 when compared with 
the AGB estimated using a RF algorithm (Fig. 3c4). The regional average 
AGB estimated by the RF algorithm and simulated by the Biome- 
BGCMuSo were 36.21 g C m− 2 and 37.22 g C m− 2, respectively. In the 
case of SOC, the comparison exhibited an R2 of 0.56 and an RMSE of 
11.02 kg C m− 2 (Fig. 3a4). However, the simulated mean SOC (12.08 kg 
C m− 2) across the grasslands of the TP was found to be lower than the 
mean estimated by the RF algorithm (14.49 kg C m− 2). Finally, with 
respect to MODIS NPP, the model exhibited an R2 of 0.60 and an RMSE 
of 86.32 g C m− 2, with the estimated regional mean (120.49 g C m− 2) 
being slightly lower than the MODIS-derived mean (129.68 g C m− 2) 
(Fig. 3b4). The model reproduced the general variability of NPP at the 
regional scale. It effectively captured the observed declining trends of 
SOC, NPP, and AGB from southeast to northwest across the grasslands of 
the TP (Fig. 3a1, a2, b1, b2, c1, c2). Furthermore, the model successfully 
reproduced variations in SOC, NPP, and AGB along aridity gradients 
(Fig. 3a3, b3, c3, and Fig. S6). The simulated NPP exhibited an increase 
from arid to humid zones, peaking in the humid zones, which closely 
aligned with the MODIS NPP trends (Fig. b3). For SOC and AGB, the 
model demonstrated an overall increasing trend in accordance with the 
aridity index, although there were also systematic deviations compared 
to the RF-estimated SOC and AGB. Specifically, there were un
derestimations in arid zones (low aridity index) and overestimations in 
humid zones (high aridity index) relative to the RF-estimated SOC and 
AGB, indicating the potential for bias in the SOC and AGB simulations of 
the Biome-BGCMuSo (Fig. 3a3, c3).

3.2. Effects of different factors on AGB, NPP and carbon stocks

Under the SOVERALL, notable temporal variation in carbon dynamics 
was observed in the TP grasslands over the past 40 years. TOTC, total 
soil organic carbon (TOTSOC), total carbon above 30 cm soil depth 
(TOTC30), top layer (0–30 cm) soil organic carbon (SOC30), LTRC, and 
VEGC all showed significant increases, with rate of 6.5 g C m− 2 a− 1, 4.5 
g C m− 2 a− 1, 5.2 g C m− 2 a− 1, 3.2 g C m− 2 a− 1, 0.8 g C m− 2 a− 1, and 0.5 C 
m− 2 a− 1, respectively (Fig. 4). AGB and NPP increased significantly by 
0.2 g C m− 2 a− 1 and 1.3 g C m− 2 a− 2 respectively, with minimum values 
of 23.5 g C m− 2 and 77.3 g C m− 2 a− 1 in 1995. The mean values of each 
carbon pool, NPP, and AGB for the period 2000–2018 under different 
scenarios were compared to the SCONTROL scenario for the same time 
period in order to assess the effects of individual and interactive in
fluences of climatic factors, atmospheric CO2 enrichment, and grazing 

Table 1 
Experimental design.

Scenarios Climate factors Grazing intensity CO2 Experimental 
description

Precipitation Temperaturea

SOVERALL Transientb Transient Transient Transient Combined effect
SCO2fert Equilibriumc Equilibrium 1979 Transient Single factor effect 

(CO2)
SCLIM Transient Transient 1979 1979 Climate change effect
SCO2CLIM Transient Transient 1979 Transient CO2 and climate change effect
SPREC Transient Equilibrium 1979 1979 Single factor effect 

(Precipitation)
STEMP Equilibrium Transient 1979 1979 Single factor effect 

(Temperature)
SGRAZING Equilibrium Equilibrium Transient 1979 Single factor effect(Grazing intensity)
SCONTROL

d Equilibrium Equilibrium 1979 1979 Control experiment

a Temperature indicates the maximum, minimum, and mean temperature.
b Transient represents that model is driven by historical data during 1979 to 2018.
c Equilibrium is constituted by the mean climate state from 1979 to 1988. Equilibrium temperature data was generated using the average temperature data from 

1979 to 1988. We calculated equilibrium precipitation data by multiplying the annual precipitation for each year between 1979 and 2018 by the adjustment factor so 
that the annual precipitation for each year is equal to the average annual precipitation between 1979 and 1988.

d The control experiment was carried out. CTRLeffect represents the inherent variability of the ecosystem process-based model when driven by equilibrium mete
orological data. This allows us to account for and subtract the baseline variability of the model, thereby isolating the true effects of external forcing on AGB, NPP, and 
carbon stocks.

Fig. 2. Scatterplot comparing observed aboveground biomass (AGB) with 
simulated AGB in 2015.
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(Fig. 4 and Table 2). Under the CO2 fertilization scenario (SCO2fert), all 
carbon pools, NPP, and AGB increased, with TOTC (defined as the sum 
of SOC, LTRC, and VEGC) rising by 32.4 g C m− 2, NPP by 6.4 g C m− 2 

a− 1, and AGB by 2.6 g C m− 2. However, the effect of CO2 fertilization 
(CO2ferteffect) was less pronounced than that of precipitation changes 
alone. In comparison to SCONTROL, SPREC resulted in notable increases in 
each carbon pool, NPP, and AGB, with TOTC rising by 89.2 g C m− 2, NPP 
by 21.6 g C m− 2 a− 1, and AGB by 5.3 g C m− 2. Precipitation was iden
tified as the primary factor driving the increase in carbon stocks, NPP, 
and AGB. When compared with SCO2fert, STEMP, and SGRAZING scenarios, 
the individual effect of precipitation (PRECeffect) was the most pro
nounced among all scenarios. The STEMP scenario demonstrated slight 
increases in TOTC, TOTC30, TOTSOC, SOC30, and NPP in comparison to 

SCONTROL. Conversely, VEGC, LTRC, and AGB exhibited slight decreases. 
While the impact of temperature on vegetation was negative, with re
ductions in VEGC, LTRC, and AGB, the combined effects of precipitation 
and temperature changes were positive. Under the SCLIM scenario, there 
were notable increases in VEGC, LTRC, and AGB, which were more 
pronounced than those simulated in the SPREC scenario. In particular, 
VEGC increased by 23.2 g C m− 2, LTRC by 7.6 g C m− 2, and AGB by 5.9 g 
C m− 2. These findings suggest that the interactive effects of precipitation 
and temperature (PREC ↔ TEMPeffect) play a significant role in promot
ing plant growth. In the SCO2CLIM scenario, increases in carbon pools, 
NPP, and AGB were greater than the sum of the increases in the SCO2fert 
and SCLIM scenarios. This suggests that the interactive effects between 
climate factors and CO2 (CO2 ↔ CLIMeffect) enhance carbon 

Fig. 3. Spatial distribution maps: estimated soil organic carbon (SOC) using a random forest (RF) algorithm (a1), simulated SOC (a2), MODIS net primary pro
ductivity (NPP) (b1), simulated NPP (b2), estimated AGB using a RF algorithm (c1), and simulated AGB (c2). Changes in regional averages based on aridity zones: 
SOC (simulated in Coral Red and RF-estimated in Cyan Blue) (a3), NPP (simulated in Coral Red and MODIS in Cyan Blue) (b3), and AGB (simulated in Coral Red and 
RF-estimated in Cyan Blue) (c3). The aridity zones are defined based on the aridity index (AI): AR (Arid, AI < 0.20), SAR (Semi-arid, 0.20 ≤ AI < 0.50), DSH (Dry 
Sub-humid, 0.50 ≤ AI < 0.65), and HUM (Humid, AI ≥ 0.65). Scatterplot comparing estimated SOC with simulated SOC, averaged over 1978–2018 (a4). Scatterplot 
comparing MODIS NPP with simulated NPP (b4). The comparison was conducted over three time periods: 2001–2005, 2006–2010, and 2011–2015, with the MODIS 
NPP and simulated NPP averaged for each period. Each point in the scatter plot represents a spatial grid cell, where the averaged MODIS NPP is compared to the 
corresponding simulated NPP for the same period. All three time periods are displayed together in the scatterplot to evaluate temporal consistency between the 
MODIS estimates and model simulations. Scatterplot comparing estimated AGB with simulated AGB, averaged over 2000–2014 (c4).
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sequestration of alpine grasslands on the TP. In comparison to the 
SCONTROL, the SGRAZING demonstrated a reduction in each carbon pool, 
NPP and AGB, with TOTC decreasing by 11.7 g C m− 2, NPP by 1.2 g C 
m− 2 a− 1, and AGB by 0.7 g C m− 2, indicating that changes of the grazing 
intensity exert a detrimental influence on the carbon sinks of alpine 

grasslands. This is why the values of the carbon pools, NPP, and AGB for 
SOVERALL were smaller than those for SCO2CLIM. Nevertheless, the extent 
of this detrimental impact is considerably less pronounced than that of 
the CO2ferteffect and PRECeffect.

Fig. 5 depicts the spatial variation patterns of TOTC, VEGC, AGB, and 

Fig. 4. Changes in total carbon (TOTC), litter carbon (LTRC), total soil organic carbon (TOTSOC), vegetation carbon (VEGC), total carbon above 30 cm soil depth 
(TOTC30), aboveground biomass (AGB), top layer (0–30 cm) soil organic carbon (SOC30), and net primary productivity (NPP) in the grasslands of the TP during 
1979–2018 under different scenarios. (a) TOTC; (b) LTRC; (c) TOTSOC; (d) VEGC; (e) TOTC30; (f) AGB; (g) SOC30; (h) NPP. CLIM: SCLIM scenario (black); CO2CLIM: 
SCO2CLIM scenario (blue); CO2: SCO2fert scenario (brown); GRAZING: SGRAZING scenario (yellow); OVERALL: SOVERALL scenario (red); TEMP: STEMP scenario (purple); 
PREC: SPREC scenario (green).

Table 2 
Average increase of carbon stocks (g C m− 2), AGB (g C m− 2), and NPP (g C m− 2 a− 1) at the period 2000–2018, compared to the control scenario, from the Biome- 
BGCMuSo model output. The average was calculated across the whole spatial domain of the study area.

Scenarios TOTC TOTSOC TOTC30 SOC30 LTRC VEGC AGB NPP

SCO2fert 32.4 19.3 23.4 11.1 6.1 7.0 2.6 6.4
SPREC 89.2 63.6 60.0 34.4 6.1 19.5 5.3 21.6
STEMP 0.17 5.9 0.49 6.2 − 2.7 − 3.0 − 2.0 0.9
SCLIM 112.3 81.5 79.5 48.7 7.6 23.2 5.9 28.8
SCO2CLIM 161.0 110.6 121.7 71.3 16.9 33.6 9.4 38.9
SGRAZING − 11.7 − 6.9 − 12.4 − 7.7 − 1.8 − 3.0 − 0.7 − 1.2
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Fig. 5. Spatial patterns of TOTC (a1-a7), VEGC (b1-b7), AGB (c1-c7), and NPP (d1-d7) change (by comparing the mean values during the period 1979–1998 and 
1999–2018), corresponding to the different experiments performed in this study. CLIM: climate change effect; PREC: precipitation change effect; TEMP: temperature 
change effect; PREC ↔ TEMP: the interactive effect between precipitation and temperature; CO2: CO2 change effect; CO2 ↔ CLIM: the interactive effect between CO2 
change and climate change; GRAZING: the grazing intensity change effect.
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NPP across a range of scenarios. The spatial distribution patterns of 
changes in TOTC, VEGC, AGB, and NPP due to climate change (Fig. 5a1, 
b1, c1, d1) and change of precipitation (Fig. 5a2, b2, c2, d2) exhibit 
notable similarities. For example, there were areas where the TOTC 
decreased by more than 300.0 g C m− 2, particularly along the border 
between the Qinghai and Sichuan Province (hereafter Sichuan) in the 
eastern TP (Fig. 5a1, a2). The regions exhibiting a reduction in TOTC 
were predominantly situated in areas experiencing a decline in precip
itation, or in regions where the increase in precipitation fell below the 
2.5 mm a− 1 threshold (Fig. S8b). This suggests that precipitation plays a 
pivotal role in shaping the spatial distribution of carbon sinks. 
Conversely, warming led to significant reductions in TOTC, with some 
regions experiencing decreases of over 200.0 g C m− 2 (Fig. 5a3). The 
most notable reductions were identified in the border regions of Tibet, 
Qinghai, and Sichuan, as well as in the northeastern Qinghai region. 
However, the warming resulted in a slight increase in AGB in northern 
Tibet and northern Qinghai, with gains of less than 5.0 g C m− 2 

(Fig. 5c3). It is noteworthy that the PREC ↔ TEMPeffect generally resulted 
in an increase in TOTC across the TP, with values exceeding 150.0 g C 
m− 2 in southern Qinghai (Fig. 5a4). With regard to the CO2ferteffect, 
there was a notable increase in TOTC, VEGC, AGB, and NPP (Fig. 5a5, 
b5, c5, d5), particularly in regions with higher baseline values of VEGC 
and NPP. This indicates that the CO2ferteffect is more pronounced in 
regions with higher initial biomass, suggesting a strong relationship 
between CO2ferteffect and baseline vegetation productivity. In general, 
the CO2 ↔ CLIMeffect resulted in an increase in carbon pools, AGB and 
NPP, with some decreases observed along the Tibet-Sichuan border and 
in northeastern Qinghai (Fig. 5a6, b6, c6, d6). As a form of human ac
tivity disturbance, changes in grazing intensity, particularly in the 
northeastern Qinghai, Sichuan, and eastern Tibet, led to reductions in 
TOTC by over 100.0 g C m− 2 in specific areas (Fig. 5a7). In contrast, 
specific areas in southern Qinghai showed significant increases in TOTC 
due to changes in grazing intensity.

3.3. Relevance and relative contributions of the factors to the changes in 
carbon stocks

Over the past four decades, the TP exhibited a trend of warming and 
increased precipitation, with temperatures rising by 0.4 ◦C decade− 1 and 
precipitation by 3.31 mm a− 1, respectively (Figs. S7, S8). Precipitation 

was the most influential factor explaining the increase of carbon stocks, 
NPP and AGB (Fig. 6). Precipitation positively contributed to the in
creases in TOTC, TOTSOC, TOTC30, SOC30, LTRC, VEGC, AGB, and NPP 
by 53.1 %, 56.6 %, 48.5 %, 45.7 %, 32.6 %, 46.4 %, 36.3 %, and 54.6 %, 
respectively. In contrast, the effect of rising temperature varied across 
different carbon pools. For AGB, NPP, and VEGC, the contributions of 
temperature were − 22.3 %, − 4.6 %, and − 13.5 %, respectively, sug
gesting that increased temperatures generally inhibit plant growth of 
alpine grasslands on the TP. However, TOTSOC and SOC30 increased 
with rising temperature (contribution of 2.6 % and 10.8 %, respec
tively), with a more pronounced impact for SOC30. On the other hand, 
TOTC decreased with warming (contribution of − 2.7 %), suggesting that 
the increases in TOTSOC were counteracted by reductions in VEGC and 
LTRC. Furthermore, the PREC ↔ TEMPeffect was found to exceed the 
impact of temperature alone (TEMPeffect) in all cases except for AGB, 
with contributions ranging from 11.2 % to 19.2 % across various carbon- 
related variables. Additionally, this combined effect surpassed the 
CO2ferteffect on VEGC (16.3 % vs. 12.4 %), AGB (19.2 % vs. 13.1 %), and 
NPP (17.3 % vs. 12.4 %). This emphasizes the significance of the 
PREC ↔ TEMPeffect on the alpine grasslands of the TP. While increased 
temperatures do not inherently stimulate plant growth and may even 
impede it, however, when increased temperatures coincide with 
increased precipitation, forming a ‘warm-wet’ climate trend, the com
bined effect of temperature and precipitation (CLIMeffect) outweighs the 
PRECeffect in promoting plant growth. Moreover, the CO2 ↔ CLIMeffect 
had a positive impact on all carbon pools, NPP, and AGB. As a result, the 
combined effect of elevated CO2 concentrations and a ‘warm-wet’ 
climate trend was greater than the sum of the CO2ferteffect and the 
CLIMeffect. With regard to grazing effect, changes in grazing intensity 
resulted in a reduction in all carbon pools, NPP, and AGB. It was found 
that changes in grazing intensity was the sole factor exerting a negative 
influence on SOC with negative contributions of − 5.4 % for TOTSOC 
and − 7.7 % for SOC30. The reduction in SOC promoted by changes in 
grazing intensity was lower in magnitude as compared to the increases 
of SOC promoted by the effects of PRECeffect, PREC ↔ TEMPeffect, 
CO2ferteffect, and CO2 ↔ CLIMeffect.

The spatial patterns of dominant controls on carbon dynamics across 
the TP were identified on a pixel-by-pixel basis (Fig. 7). The PRECeffect 
was the dominant factor explaining the changes in TOTC, VEGC, AGB 
and NPP in the spatial domain, account for 67.9 %, 71.4 %, 71.4 %, and 

Fig. 6. The relative contributions of the individual and interactive environmental factors to carbon stocks, AGB and NPP. The changes in carbon stocks, AGB, and 
NPP were calculated by comparing the mean values for 1999–2018 with the average values for 1979–1998. OVERALL: combined effect; PREC: precipitation change 
effect (yellow); TEMP: temperature change effect (red); PREC ↔ TEMP: the interactive effect between precipitation and temperature (pale green); CO2: CO2 change 
effect (purple); CO2 ↔ CLIM: the interactive effect between CO2 change and climate change (blue); GRAZING: the grazing intensity change effect (green).
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72.6 % of the study area, respectively. This area was located in northern 
Tibet and northern Qinghai. The TEMPeffect was the dominant factor for 
TOTC, VEGC, AGB, and NPP in 10.8 %, 11.7 %, 13.3 %, 15.4 %, and 
10.8 % of the study area, respectively, located in southern Tibet, 
northeastern Qinghai, the border region between Qinghai and Sichuan, 
and Sichuan. The PREC ↔ TEMPeffect was the dominant factor for TOTC, 
VEGC, AGB, and NPP in 9.2 %, 9.4 %, 9.5 %, and 11.7 % of the study 
area, respectively. These areas were primarily distributed in southern 
Tibet and southern Qinghai. Changes in grazing intensity were the 
dominant factor for TOTC, VEGC, AGB, and NPP in 3.1 %, 3.4 %, 1.3 %, 
and 0.9 % of the study area, respectively, with these regions primarily 
located in Sichuan and Yunnan, where grazing intensity had decreased. 
The CO2ferteffect was the dominant factor for TOTC, VEGC, AGB, and 
NPP in 7.4 %, 1.4 %, 0.9 %, and 2.6 % of the study area, respectively. 
Amongst all the factors, the CO2 ↔ CLIMeffect had the least significant 
influence, accounting for less than 2 % of the alpine grasslands on the 
TP.

4. Discussion

4.1. Spatial distribution and influence of control factors on carbon 
dynamics

This study utilized the process-based model Biome-BGCMuSo to 
evaluate the spatial distribution of dominant drivers of carbon dynamics 
in alpine grasslands on the TP. Among the environmental factors 
considered, precipitation was identified as the most influential driver, 
affecting all carbon pools, AGB, and NPP (Fig. 6), and occupying the 
largest area as the dominant factor (Fig. 7). Specifically, increased 
precipitation (Fig. S8) was found to significantly enhance plant growth 
in northern Tibet and northern Qinghai, establishing PRECeffect as the 
dominant factor of carbon stocks and plant productivity in these regions 
(Fig. 7). This finding is consistent with evidence derived from remote 
sensing, field observations, and modeling. These studies demonstrated 
that, at the regional average level, precipitation plays a pivotal role in 
shaping carbon dynamics across the TP, exerting a greater influence 
than other environmental factors (He et al., 2023; Jiao et al., 2021; Li 
et al., 2020; Liu et al., 2021a; Shi et al., 2023; Shi et al., 2014). Increased 
precipitation increased soil moisture availability, which subsequently 
improves plant water conditions, thereby promoting growth (Fu et al., 

2018; Zhang et al., 2018). As a result of a high root/shoot ratio in alpine 
grasslands (e.g., in alpine meadows, the root/shoot ratio can reach up to 
23.82), more biomass is allocated below ground, which directly en
hances soil carbon input (Zhang et al., 2025). Increased water avail
ability not only facilitated immediate plant growth but also contributed 
to an extended growing season. Specifically, increased precipitation 
prolonged the growing season of alpine grasslands on the TP, which 
further enhanced plant productivity (Meng et al., 2021; Peng et al., 
2021a). As a consequence of the precipitation-driven increase in AGB 
and VEGC, LTRC also increases, leading to a greater carbon input to the 
soil, thereby increasing SOC, and ultimately resulting in an increase in 
TOTSOC and TOTC in response to increased precipitation (Chen et al., 
2017). Consequently, precipitation was found to be the dominant driver 
of carbon dynamics in the alpine grasslands of the TP, highlighting its 
critical role in the carbon cycle of the region. The findings of our study 
suggested that precipitation dominates TOTC dynamics in 67.9 % of the 
grasslands on the TP, which is consistent with studies conducted in the 
largest temperate grassland belt in the world, the Central Asian grass
lands (Zhu et al., 2023b). Precipitation dominated 59.0 % of the Central 
Asian grasslands primarily by reducing water stress and increasing plant 
productivity, while temperature dominated only 3.0 % of the Central 
Asian grasslands (Zhu et al., 2022). In contrast, Arctic tundra ecosys
tems, which are similar to the grassland ecosystems on the TP (e.g., cold 
climates, widespread permafrost, and substantial soil organic carbon 
stocks), are primarily influenced by temperature (Heffernan et al., 
2024). This is due to distinct constraint mechanisms that differ from 
those governing the TP grasslands (Mishra et al., 2021).

The TEMPeffect on carbon dynamics in the alpine grasslands of the TP 
generally led to reductions in VEGC, AGB and NPP at the regional 
average scale, while exhibiting pronounced regional heterogeneity 
(Figs. 5, 6). Fu et al. (2015) demonstrated through field experiments that 
elevated temperatures have a detrimental impact on soil moisture of the 
grasslands, which in turn impede plant growth. In the central and 
eastern TP, where grassland productivity is relatively high, our model 
simulations indicated warming exacerbates the negative impacts on 
VEGC, AGB, and NPP by increasing water demand and intensifying soil 
moisture deficits. The limited warming reduces soil moisture in the 
upper layers through evapotranspiration, but it is not sufficient to 
disrupt the permafrost to replenish soil moisture. In the northern and 
western TP, where grassland productivity is lower than in the eastern TP 

Fig. 7. Spatial pattern of the dominant factors on TOTC (a), VEGC (b), AGB (c), and NPP (d) over the grasslands of the Tibetan Plateau. PREC ↔ TEMP: the 
interactive effect between precipitation and temperature (yellow); CO2 ↔ CLIM: the interactive effect between CO2 change and climate change (red); GRAZING: the 
grazing intensity change effect (blue); TEMP: temperature change effect (brown); PREC: precipitation change effect (cyan); CO2: CO2 change effect (purple).
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and vegetation is more drought-tolerant (Lin et al., 2023), our results 
showed that the negative effects of warming are less pronounced. In 
contrast to the findings of field experiments, which indicated that 
warming significantly stimulated plant growth in the alpine meadow but 
reduced growth in the alpine steppe, our model simulations revealed a 
different spatial pattern of TEMPeffect (Chen et al., 2020; Ganjurjav et al., 
2016). These differences can be attributed primarily to the fact that we 
compared vegetation and carbon stock simulations of the STEMP scenario 
between 1999–2018 and 1979–1998, while field experiments generally 
have shorter durations. Moreover, we used precipitation data reflecting 
1979–1988 conditions under the STEMP scenario, which contrasts with 
field experiments where precipitation varied as well as temperature. 
Despite the reductions in plant growth, our findings indicated that 
warming increases TOTSOC and SOC, particularly in the surface soil 
layer (Fig. 6). The implication is that warming, which typically facili
tates heterotrophic respiration by stimulating microbial decomposition, 
may impede heterotrophic respiration due to soil moisture deficiencies 
caused by warming and increased evapotranspiration (Chen et al., 2016; 
Chen et al., 2020). In summary, it is important to note that TEMPeffect 
cannot be generalised across the entire alpine grasslands on the TP. Xie 
et al. (2024) revealed a clear spatiotemporal pattern of the temperature- 
and water-limitations: the eastern TP is characterized by temperature 
limitation (similar to the Arctic), whereas the western TP is character
ized by water limitation (similar to the Central Asia). This explains why 
temperature is the key driver of TOTC in only 10.8 % of the TP, primarily 
in its eastern regions. In contrast to the circumpolar region, where 
temperature is the primary climatic factor influencing SOC stocks, 
Zhang et al. (2025) found precipitation determines the spatial variability 
of SOC of alpine grasslands on the TP. This may be atrributed to harsher 
Arctic conditions, such as lower mean annual temperatures (− 9.9 ◦C in 
Arctic tundra compared to − 3.5 ◦C in grasslands on the TP), limited 
vegetation growth, and poorly developed soils, where increased pre
cipitation does not significantly enhance VEGC and SOC (Mishra et al., 
2021). Moreover, the longer SOC turnover times in the Arctic tundra 
compared to alpine grasslands on the TP (1609 vs. 547 years) may 
render Arctic SOC dynamics more sensitive to warming, as evidenced by 
a stronger correlation between turnover time with temperature in Arctic 
tundra than in the alpine grasslands of the TP (R2 = 0.44 vs. R2 = 0.13) 
(Wu et al., 2021). The spatial heterogeneity of TEMPeffect emphasises the 
necessity of considering the regional context (including soil moisture 
availability, plant drought tolerance and regional climatic conditions) 
when evaluating the TEMPeffect on the carbon dynamics of alpine 
grasslands.

Although the CO2ferteffect was the dominant factor only in a rela
tively limited area (Fig. 7), its influence on carbon dynamics of alpine 
grasslands was considerable, particularly in its role in promoting plant 
growth and carbon sequestration. Our results demonstrated that 
CO2ferteffect was the second most influential factor in regulating TOTC 
and LTRC, and the third most influential factor for NPP (Fig. 6). Our 
results further showed that the CO2ferteffect is more pronounced in areas 
with higher biomass, thereby suggesting that regions with greater plant 
productivity are more responsive to elevated CO2 levels (Fig. 5b5, c5, 
d5). This can be attributed to the fact that areas with higher biomass 
have greater photosynthetic capacity, which induces a larger require
ment of CO2 for growing, and increases CO2 uptake by the growth. 
Nevertheless, the CO2ferteffect is subject to modulation by other critical 
factors, including nitrogen availability and water supply. The results of 
CO2 enrichment experiments conducted at the Naqu grassland station of 
northern TP indicated that nitrogen availability and precipitation exert a 
significant influence on the CO2ferteffect, which is observed to diminish 
when water availability is high (Chen et al., 2021). Field experiments on 
the Naqu station further demonstrated that the combined addition of 
nitrogen and CO2 enrichment results in a more pronounced increase in 
biomass than either factor alone (Zhu et al., 2020). This highlights the 
pivotal interaction between nutrient dynamics and CO2ferteffect. Un
derstanding how atmospheric CO2 enrichment interacts with nitrogen 

deposition and other environmental factors is essential for accurately 
predicting future carbon sequestration potential, particularly in view of 
the continued increase in global nitrogen deposition (Franz and Zaehle, 
2021).

Previous studies have proposed that anthropogenic disturbance, 
predominantly grazing, exerts a dominant influence on the carbon dy
namics of alpine grasslands on the TP (Liu et al., 2021b; Liu et al., 2019; 
Zhao et al., 2022). These studies primarily relied on Residuals-Trend 
model to assess vegetation dynamics. A meta-analysis of 136 paired 
observations from 55 publications quantified the impact of livestock 
grazing on SOC stocks and AGB in grasslands of the TP, revealing a 
significant decrease in SOC stock (11.9 %) and AGB (51.6 %) following 
grazing activities (Ma et al., 2022). However, this study specifically 
compared grazed versus ungrazed conditions, rather than examining the 
effects of varying grazing intensities. Our study demonstrated that 
changes in grazing intensity were not dominant factor influencing car
bon dynamics in TP grasslands (Figs. 6, 7). This finding aligns with 
previous studies by Li et al. (2021b) and Zhang et al. (2017), which 
similarly indicated that grazing had a limited effect on carbon pools in 
comparison to climate factors, including precipitation and temperature. 
Lehnert et al. (2016) found that the dominant degradation pattern 
remained consistent across prefectures, irrespective of changes in live
stock numbers. They concluded that climate variability, rather than 
overgrazing, was the primary driver of degradation between 2000 and 
2013. In our study, although there was an increase/a reduction in 
grazing intensity over the TP, the change was minor compared to the 
historical baseline (Fig. S2), and thus had little impact on carbon dy
namics at the regional scale (Meng et al., 2023). Nevertheless, there 
remains a significant debate in the scientific community about the 
relative contributions of grazing and natural environmental factors to 
carbon dynamics in grasslands on the TP (Li et al., 2018a). Further 
research is needed to clarify the potential long-term impacts of grazing 
on carbon sequestration potential. In particular, its interaction with 
other factors, such as precipitation and temperature, should be exam
ined, especially in the context of grazing exclusion and ecological 
restoration in alpine grasslands.

In addition to quantifying the individual effects of different factors, 
we also assessed the PREC ↔ TEMPeffect and CO2 ↔ CLIMeffect through 
factorial analysis. The findings demonstrate that for both VEGC and 
NPP, the PREC ↔ TEMPeffect was the second most influential factor, 
indicating that warming can facilitate plant growth only when accom
panied by increased precipitation (Fig. 6). The warming prolongs the 
growing season and facilitates photosynthesis in vegetation, thus 
increasing AGB and NPP (Peng et al., 2021a). However, warming also 
increases evapotranspiration, which could exacerbate drought condi
tions and reduce AGB and NPP if precipitation does not increase. By 
combining warming and increased precipitation, a longer growing sea
son is maintained with vital water support. In the TP grasslands, where 
low temperatures typically limit decomposition, increased precipitation 
promotes plant growth and carbon input, often outweighing warming- 
induced acceleration of decomposition (Wei et al., 2021). Previous 
studies highlighted the significance of the PREC ↔ TEMPeffect. For 
instance, Li et al. (2020) found that the temperature had a positive in
fluence on vegetation growth in humid regions but had a negative in
fluence in arid regions, where water availability is limited. Similarly, 
Huang et al. (2016) found that in the arid northwestern TP, warming 
constrained vegetation growth, whereas in the relatively humid south
eastern regions, warming had a positive effect on vegetation growth. A 
field experiment conducted by Zhao et al. (2019) at Nam Co Station 
revealed that a 2 ◦C increase in temperature significantly reduced 
vegetation cover and AGB. However, when combined with a 15 % in
crease in precipitation, the detrimental effect of warming was offset, 
resulting in an enhanced vegetation growth. These results suggest that 
the PREC ↔ TEMPeffect is crucial in determining plant productivity and 
carbon dynamics in the alpine grasslands on the TP. Similarly, in the 
Central Asian grasslands, the interactive effect was the most important 
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factor controlling TOTC and the second most important factor control
ling NPP (Zhu et al., 2022). In the future, CMIP6 projections indicate an 
increase in precipitation and temperature over the TP (Huang et al., 
2024). Given the positive effect of precipitation and the PREC ↔ 
TEMPeffect on carbon uptake, the carbon sink capacity of the TP is ex
pected to continue to increase in the future. Furthermore, the CO2 ↔ 
CLIMeffect also played a significant role in carbon dynamics (Fig. 6). 
While previous studies rarely focused on the CO2 ↔ CLIMeffect in detail, 
our study highlights its critical role in increasing carbon stocks, AGB, 
and NPP (Fig. 6). It is recommended that future research should prior
itize a more in-depth exploration of these interactions in order to gain a 
deeper understanding of their implications for carbon dynamics under 
changing environmental conditions.

4.2. Uncertainties in the model and future prospects

In this study, AGB, SOC and NPP data were used exclusively for 
model evaluation and were not included in the model parameterization 
process. Given the temporal limitations of these datasets, particularly 
AGB, which is based on a single campaign, future research requires 
higher spatial resolution data and longer time series to improve model 
validation and reliability. The Biome-BGCMuSo model exhibited mod
erate performance in simulating AGB (R2 = 0.53) and SOC (R2 = 0.56). 
Two principal sources of discrepancies were identified in the validation 
of the field-observed AGB. Firstly, the model operated at a spatial res
olution of 0.1◦, whereas field measurements were conducted at each site 
within a 10 m × 10 m area, leading to spatial scale mismatches that 
impact model performance. The TP is one of the regions with the highest 
surface roughness in the world (Amatulli et al., 2020). The analysis of 
elevation ranges within the CMFD grids (0.1◦ × 0.1◦), based on 90 m 
resolution SRTM DEM data, revealed considerable topographic hetero
geneity in the grasslands of the TP. Specifically, 70.6 % of the grids 
showed elevation ranges greater than 500 m, and 34.9 % showed 
elevation ranges greater than 1000 m (Fig. S9). Secondly, the complex 
topography of the grasslands on the TP, with pronounced differences in 
NDVI between polar-facing slopes and equatorial-facing slopes (Yin 
et al., 2023), creates microclimatic conditions that are challenging to 
simulate in Biome-BGCMuSo model, further contributing to simulation 
discrepancies. With regards to the evaluation of SOC, it revealed un
certainties in the model arising from the complexity of subsurface pro
cesses and the multitude of biotic and abiotic interactions that regulate 
SOC input and turnover. The Multi-Scale Synthesis and Terrestrial 
Model Intercomparison Project (MsTMIP) revealed considerable incon
sistency in the estimation of SOC across models, with estimates varying 
from less than 3 Pg C to over 40 Pg C on the TP (Ding et al., 2019). This 
variability reflects the challenges in accurately modelling SOC dy
namics, which depend on the representation of decomposition rates and 
their sensitivity to temperature, soil moisture, and carbon–nitrogen in
teractions (Ito et al., 2020; Huntzinger et al., 2020; Moyano et al., 2013). 
Similarly, the Biome-BGCMuSo model may misrepresent the equilib
rium between soil organic carbon accumulation and decomposition 
during the spin-up period, a limitation also observed in a case study 
using the LPJ-GUESS model in a boreal forest in southern Sweden (Islam 
et al., 2024). Such misrepresentation may result from uncertainties in 
the parameterization of SOC turnover rates and their sensitivity to 
environmental drivers, such as temperature and soil moisture 
(Huntzinger et al., 2020). These limitations highlight the need for 
improved model representations of SOC dynamics in Biome-BGCMuSo 
model, particularly in the alpine ecosystems of the TP, which are char
acterized by extreme climatic conditions, pronounced temperature 
variability and highly heterogeneous soils shaped by its unique 
topography.

In this study, grazing intensity data was obtained by interpolating 
GLW3 data using the county-level number of livestock recorded in sta
tistical yearbooks, to generate regional-scale estimates of grazing in
tensity across the TP. Although this approach provides a comprehensive 

method for estimating grazing intensity patterns over extensive areas, it 
still has certain limitations. Here, we highlight the potential of inte
grating remote sensing data to enhance grazing intensity assessments 
accuracy. For example, Chang et al. (2024) generated annual grazing 
probability and intensity maps based on Landsat 7/8 and Sentinel-2 
images for the Hulun Buir grasslands in China. To improve the accu
racy of future simulations of alpine grasslands on the TP, models and 
climate data should be downscaled to incorporate finer-scale details and 
topographic features into the analysis (Fiddes et al., 2022). The com
bination of advanced downscaling techniques with the integration of 
topographic corrections will facilitate a more detailed understanding of 
the carbon cycle dynamics of alpine grasslands on the TP (Tscholl et al., 
2022), thereby supporting the development of more effective, localized 
management strategies for this vulnerable ecosystem.

5. Conclusion

The dominant drivers of alpine grassland carbon dynamics on the TP 
remains a subject of considerable debate. Using our 0.1◦ spatial reso
lution grazing intensity data for the TP, we parameterized grazing ef
fects as a dynamic grazing pressure gradient within the Biome- 
BGCMuSo model. This study then separated and quantified the indi
vidual and interactive effects of climate change, atmospheric CO2 
enrichment, and grazing on carbon stocks, AGB, and NPP in the alpine 
grasslands of the TP through model scenarios and factor analysis. Our 
findings highlight the critical influence of precipitation on carbon dy
namics across the region. The increased precipitation was identified as 
the primary driver of increasing carbon stocks, AGB, and NPP (positive 
contribution of 32.6–56.6 %). The sole effect of warming resulted in a 
decline in TOTC (negative contribution of − 2.7 %), LTRC (− 8.4 %), 
VEGC (− 13.5 %), AGB (− 22.3 %), and NPP (− 4.6 %), particularly in the 
central and eastern TP. However, when warming was accompanied by 
increased precipitation, the interactive effects of precipitation and 
temperature increased carbon stocks, AGB and NPP (positive contribu
tion of 10.9–19.2 %). This highlights the critical role of the synergistic 
interaction between precipitation and warming in driving positive 
changes in these ecosystems. CO2 fertilization (positive contribution of 
11.5–22.7 %), together with the interactive effects between CO2 and 
climate change (positive contribution of 5.6–13.5 %), also showed 
positive effects on carbon dynamics, supporting further plant growth. In 
contrast, changes in grazing intensity were found to have a negative 
effect on carbon stocks, AGB and NPP; however, the impacts were 
limited. As projected by CMIP6, the future climate of the TP will become 
warmer and wetter. It is expected that AGB, NPP, and the carbon 
sequestration capacity of alpine grasslands will continue to increase due 
to the combined beneficial effects of increasing precipitation and its 
interaction with temperature. Under these conditions, a modest increase 
in grazing intensity could be feasible, potentially benefiting the liveli
hoods of herders while still maintaining the carbon sink function of 
alpine grasslands. Future studies should focus on disentangling the 
complex interactions between natural drivers and anthropogenic 
drivers, using high-resolution meteorological and grazing intensity data 
(e.g., 1 km spatial resolution). This will provide a deeper understanding 
of how alpine grassland ecosystems may respond to ongoing environ
mental changes and help refine predictions of carbon dynamics in alpine 
grasslands on the TP.
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