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ABSTRACT
Extreme dry- heat (EDH) climate poses significant challenges to global food production and exacerbates greenhouse gas (GHG) 
emissions, impeding efforts to mitigate agricultural climate impacts. However, the concurrent effects of long- term EDH climate 
and mitigation strategies on cropland productivity and GHG emissions remain poorly understood. Here, we integrated field ob-
servations, agroecosystem model outputs, and nursery data to examine how environmental factors and management practices 
influence wheat GHG emission intensity across the U.S. over the past six decades. Our findings indicate an overall increase 
in U.S. wheat production over the past 60 years, despite fluctuations in planted areas that have led to declines in production 
after 1990. The decline in GHG emissions from winter wheat after 1990 corresponds to fluctuations in planting areas, whereas 
emissions from spring wheat have continued to rise. Climate change and nitrogen fertilizer application have emerged as the 
primary drivers of these trends. EDH climates have intensified emissions intensity in over 80% of wheat- growing regions under 
current agricultural management practices. Specifically, the dry- heat sensitivity of emission intensity for spring wheat increased 
by 130% from 1960 to 2018, while for winter wheat, it surged several- fold after 2008. To address these challenges, we propose 
environment- specific tillage strategies to significantly reduce the dry- heat sensitivity of GHG emission intensity under local con-
ditions. These strategies identify regionally optimal tillage schemes (including no- tillage and conventional tillage) to mitigate the 
adverse impacts of EDH climates. The implementation of these strategies in selected wheat- producing regions reduced dry- heat 
sensitivity by 9.8% (5.8%–17.7%) for spring wheat and 13.3% (8.0%–20.9%) for winter wheat emissions intensity. These findings 
underscore the critical need for targeted management approaches to alleviate the escalating indirect impacts of EDH climates. 
Such strategies are crucial for shaping agricultural and environmental policies aimed at achieving high- yield and low- emission 
targets in a warming world.
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provided the original work is properly cited.
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1   |   Introduction

Amid global climate change, the world's major grain- producing 
regions are experiencing varying degrees of aridification and 
warming, accompanied by a series of extreme dry- heat (EDH) 
events. EDH conditions threaten agricultural production by 
depleting available water (Jin et al. 2023), limiting plant phys-
iological processes (Nicolas et al. 1984; Lobell et al. 2012), and 
shortening crop growth periods (Nicolas et  al.  1984; Asseng 
et al. 2015). These conditions triggered heat and drought stress, 
further reducing the carbon fixation capacity in crops (Lobell 
et  al.  2012) and enhancing autotrophic and heterotrophic res-
piration (Bardgett et  al.  2008; O'Connell et  al.  2018; Harris 
et al. 2022). As a result, they cause sharp increases in agricul-
tural greenhouse gas (GHG) emissions and the climate costs of 
food production. Non- linear and intensified adverse effects of 
extreme climates on crop yields have been observed in previous 
studies conducted in warming environments (Schlenker and 
Roberts 2009; Hogan and Schlenker 2024). However, the intri-
cate response of cropland GHG emissions to long- term exposure 
to EDH climates remains largely understudied, particularly re-
garding its interaction with key biophysical factors such as soil 
properties and management practices (Dong et al. 2025). This 
significantly hinders our understanding of carbon and nitrogen 
cycling in agricultural ecosystems and limits accurate assess-
ment of GHG budgets.

Agricultural tillage practices offer a potential solution for mit-
igating the adverse effects of climate change (Gilbert  2011; 
Lipper et  al.  2014). Conventional tillage, characterized by 
plowing and soil disturbance, is the most widely adopted 
tillage practice and has been shown to significantly improve 
crop productivity and resilience to environmental stresses 
(Pittelkow, Liang, et  al.  2015; Cui et  al.  2024). As concerns 
regarding soil degradation and GHG emissions increase, 
sustainable tillage designs are increasingly advocated for 
local agricultural production and emission reduction due to 
their potential benefits in sustainability, cost- effectiveness, 
and ease of implementation (Gan et al. 2014; Jat et al. 2020). 
These practices include no- tillage (NT), reduced tillage, and 
conservation tillage. Nevertheless, farmers must balance 
the need for production with the imperative to reduce envi-
ronmental burdens, as these objectives are often in conflict 
within the context of individual tillage practices. Previous 
studies have often reported inconsistent or even contradictory 
findings. This is likely because the tillage effects are highly 
dependent on site- specific factors such as soil characteris-
tics, local climate, and biodiversity. For example, plow tillage 
has been found to improve soil aeration and the transport of 
NO3

−, NH4
+, and organic carbon to the soil surface, thereby 

promoting carbon dioxide (CO2), nitrous oxide (N2O), and 
NO emissions (Carbonell- Bojollo et  al.  2022; Li et  al.  2023; 
Guo et  al.  2024). In contrast, other studies suggest that NT 
increases denitrification rates and microbial biomass in the 
upper soil layers, potentially contributing to soil CO2 and N2O 
emissions (Jantalia et al. 2008; Mkhabela et al. 2008; Lognoul 
et al. 2017). Additionally, some studies have reported reduced 
crop productivity under NT (Pittelkow, Linquist, et al.  2015; 
Cui et  al.  2024), while others suggest that plow tillage may 
harm crop yields by disrupting the soil- aggregate structure 
and altering soil water and gas dynamics (Guo et al. 2024). In 

summary, the complexity of underlying surface conditions—
particularly in the context of increasing EDH events—presents 
challenges to the effectiveness, viability, and sustainability of 
tillage schemes. Optimizing trade- offs in tillage practices is 
therefore crucial for balancing productivity and emissions at 
the levels of farmers, regions, and nations.

The United States (US) is a major wheat producer and exporter, 
playing a critical role in global food security and significantly 
influencing food prices through its impact on the global sup-
ply chain and trade. However, severe aridity and heatwaves 
have increasingly impacted US wheat production over the past 
four decades (Zhu and Burney 2021; Zhao et al. 2022), result-
ing in yield reductions of 10%–40% (Lollato et al. 2017; Zhao 
et al. 2022) and potential GHG emissions associated with win-
ter wheat production (Smith et al. 2013; Ghimire et al. 2019). 
In the U.S. Great Plains, EDH climates have led to annual 
yield losses of up to 9 kg ha−1 in severely affected counties 
(Zhao et  al.  2022), equivalent to approximately ~1.9 million 
tons of winter wheat production. The interactions between cli-
mate extremes and food production in this region facilitate the 
investigation of how climate costs respond to EDH climates 
within the context of food production, the dynamics in their 
sensitivity, and the mitigating effects of environment- specific 
tillage practices.

Given the increasing frequency of EDH events linked to climate 
change, agricultural sustainable development confronts dual 
challenges: ensuring food production to safeguard livelihoods, 
while minimizing the environmental impacts. Mitigating 
GHG emission intensity (GHGI, the amount of GHG emissions 
per unit of food production) through tillage management is 
therefore critical to achieving both food security and cleaner 
production. For this, we employed a model- data integration 
framework that couples a process- based terrestrial biosphere 
model [Dynamic Land Ecosystem Model (DLEM)] with multi-
ple in situ measurements and nursery yield statistics to inves-
tigate the sensitivity and dynamics of US wheat yield (spring 
and winter wheat), net GHG emissions [CO2, N2O, and methane 
(CH4)], and GHGI under EDH climates, including both individ-
ual and compound events. Additionally, two tillage scenarios 
were simulated to examine the feasibility and sustainability of 
implementing environment- specific tillage practices to mitigate 
the adverse effects of EDH climates on GHGI. Our study aimed 
to: (i) quantify the magnitude, trends, and spatiotemporal vari-
ations of wheat yield, net GHG emissions, and GHGI in the US 
from 1960 to 2018; (ii) attribute variations in yield and GHGs to 
natural and anthropogenic management factors (as detailed in 
Table S1); (iii) analyze the temporal variations in wheat GHGI 
sensitivity to EDH climates; and (iv) evaluate the effects of 
context- specific tillage practices—NT and conventional tillage 
(CT)—in mitigating sensitivity to EDH climates and assess the 
potential of environment- specific tillage strategies. The findings 
of this study will provide insights into the systematic changes 
in wheat sensitivity to EDH climates under long- term warming. 
Furthermore, this research proposes climate- dependent agricul-
tural tillage strategies to mitigate the adverse impacts of extreme 
climate conditions, offering a valuable foundation for policy-
makers to develop effective agricultural and environmental pol-
icies aimed at achieving high- yield and low- emission pathways 
under a warming climate.
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2   |   Materials and Methods

2.1   |   Model Description

2.1.1   |   Overview

The new agricultural module of the DLEM v4.0 model (You 
et al. 2022) is developed based on previous versions (DLEM- Ag, 
Ren et  al.  2012; and DLEM- Ag2, Zhang et  al.  2018) and in-
cludes significant advancements in crop growth processes 
and key management practices (e.g., fertilization, irrigation, 
tillage, and cover cropping). For wheat, the new model sig-
nificantly improves regional simulation performance and the 
capacity to quantify the impacts of agricultural activities on 
biosphere- atmosphere interactions. These improvements are 
achieved through better representation of crop phenological 
development, dynamic carbon allocation, yield formation, 
and management practices. Specifically, we first introduced 
phenological development frameworks for winter and spring 
wheat, accounting for the environmental stresses associated 
with wheat growth. Second, a new scheme for dynamic carbon 
allocation was implemented (i.e., the allocation ratio of net as-
similates was determined by the carbon allocation curve in 
different vegetation pools and adjusted based on water, light, 
and nitrogen stress). Third, yield formation was calculated as 
the balance between the carbon supply in the reproductive 
pool and the carbon demand for grain filling. Finally, we in-
corporated essential management practices into DLEM v4.0, 
such as tillage, cover cropping, and crop genetic improve-
ments, and implemented a dynamic rotation scheme using 
real- time rotation maps to reflect annual changes in crop dis-
tribution and types.

In DLEM v4.0, net CO2 emissions are derived from soil carbon 
pool turnover, regulated by vegetation photosynthesis, litter 
accumulation, autotrophic and heterotrophic respiration, and 
environmental changes. CH4 exchange is the balance between 
production, oxidation, and transportation from the soil pore 
water spaces to the atmosphere. The N2O module captures ni-
trification and denitrification processes and considers relevant 
factors such as nitrogen availability, soil characteristics, and 
thermal and moisture statuses. Previous studies have detailed 
the model's mechanisms for yield formation, GHG emission, the 
interaction between carbon dynamics and environmental stress, 
and the response of agricultural carbon cycling to anthropogenic 
management practices (Tian, Xu, et al. 2010; Ren et al. 2012; Lu 
et al. 2022; You et al. 2022). Notably, the definitions and units of 
all terminology used in this study are listed in Table S6.

2.1.2   |   Wheat Phenological Development and Yield 
Formation in DLEM v4.0

(1) Wheat phenological development: The new model explicitly 
considers phenological differences between wheat and other 
crops, as well as phenological stage- dependent environmental 
stresses. Specifically, DLEM v4.0 follows a phenological de-
velopment cycle similar to that of DLEM- Ag2 (Ren et al. 2012; 
Zhang et al. 2018) but incorporates more detailed phenological 
stages and considers the effects of environmental stresses, such 
as water and nitrogen, on phenological development (Figure S1). 

Additionally, the model divided the wheat life cycle into ten 
stages: sowing, germination, emergence, terminal spikelets, end 
of leaf growth, end of ear growth, beginning of grain filling, end 
of grain filling, physiological maturity, and harvest (Figure S1). 
If the number of days after the simulated sowing date exceeded 
a phenology- specific threshold, seed germination was trig-
gered, followed by subsequent phenological development. The 
beginning time and duration of specific phenological stages 
were determined according to the phenological development 
scheme, that is, Biological Days (BD) (Soltani and Sinclair 2012). 
Subsequently, the fraction of cumulative biological days (fCBD), 
which served as an indicator of growth rate, was calculated by 
dividing the actual accumulated BD from germination to the 
current day by the total BD required for maturity. The spe-
cific formulas for BD and fCBD, along with the target fCBD for 
each phenological stage, are detailed in Text S1 and S2 and You 
et al. (2022).

(2) Yield formation: In DLEM v4.0, yield formation follows a 
supply–demand relationship. Specifically, it is estimated as the 
balance between the available carbon assimilation supply in re-
production pools and the actual carbon demand for crop grain 
filling (Jones et  al.  2003). Additionally, we considered crop- 
specific grain- filling characteristics to calculate the actual car-
bon demand for wheat (You et  al.  2022). The new model also 
accounts for translocation of dry matter between stem tissues 
and the reproductive pool. If the available carbon assimilates 
fall short of meeting the actual carbon demand, the model al-
lows the transfer of carbon from the stem pool to the reproduc-
tion pool to supplement grain filling, limited to a maximum of 
20%. If excess assimilates were present, carbon exceeding the 
actual demand was transferred back from the reproduction pool 
to the stem pool to ensure mass balance.

2.1.3   |   Improved Tillage and Other 
Management Practices

DLEM v4.0 incorporates four tillage practices (NT, conservation 
tillage, reduced tillage, and CT) based on tillage depth, mixing 
efficiency, and the proportion of soil surface covered by residues 
after tillage (You et al. 2022). The effects of tillage on the agricul-
tural ecosystem are represented in three aspects: (1) changes in 
surface residue coverage due to tillage mixing, resulting in the 
redistribution of soil organic matter and nutrients; (2) changes 
in litter content, bulk density, moisture, and nitrogen cycling 
processes (e.g., nitrification, denitrification, and leaching); and 
(3) changes in soil decomposition rates (You et al. 2022). A com-
prehensive description of the effects of tillage practices on soil 
organic matter and nutrient contents, soil water processes, and 
decomposition is provided in Text S3. Additionally, relevant till-
age parameters are listed in Table S1.

The new model also includes cover cropping, representing prac-
tices by planting crops (e.g., winter rye and peas) in the fallow 
period and leaving crop biomass in the field for the next crop- 
growing season (Huang et  al.  2020). We also incorporated 
simplified representations of genetic improvement strategies 
because the substantial increase in crop yields over the past de-
cades can largely be attributed to advancements in management 
practices and crop breeding (Hammer et al. 2009; Pingali 2012). 
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The effects of crop genetic improvements on the yield are 
achieved through two mechanisms: increasing the photosyn-
thetic rate (maximum carboxylation) and enhancing the nitro-
gen uptake ability of wheat. Further details and parameters on 
wheat genetic improvements are provided in Lu et al. (2018) and 
You et al. (2022). In addition to these new considerations, DLEM 
v4.0 also enhances the representation of existing crop rotation 
practices by introducing time- varying crop rotation schemes 
into the new model, rather than the static rotation maps used in 
previous versions.

2.2   |   Input Data

2.2.1   |   Gridded Datasets

We developed long- term spatial datasets for the continental US 
with 5 × 5 arcmin to drive DLEM v4.0, including atmospheric 
CO2 concentrations, nitrogen deposition, soil properties, land 
cover change, crop rotation, nitrogen fertilizer and manure 
applications, irrigation, tillage intensity, and phenological pe-
riods. These historical dynamic data, spanning from 1860 to 
2018, served as fundamental elements driving the model. These 
data have been extensively used to estimate regional terrestrial 
carbon and nitrogen cycles and the budget for GHG emissions. 
Table S2 provides details of the sources, periods, temporal–spa-
tial resolution, and processing methods for the driving data. 
This study provides detailed descriptions of wheat production 
simulation data, including wheat varieties, planting dates, ro-
tations, fertilization, irrigation, and tillage, rather than other 
fundamental drivers. For more details on the environmental 
drivers, refer to You et al. (2022).

2.2.1.1   |   Wheat Varieties. The model categorizes 
national winter wheat into three main varieties based on 
the classification of relative maturity groups: soft white win-
ter wheat, hard red winter wheat, and soft red winter wheat. 
The growth characteristics of wheat under diverse tempera-
ture and precipitation conditions were well captured by 
these variety groups. A wheat variety map was created based 
on data from the National Association of Wheat Growers. 
Unlike the widespread cultivation of winter wheat, owing to 
the limited distribution of spring wheat, DLEM v4.0 includes 
only a single spring wheat variety for parameter calibration 
and simulation.

2.2.1.2   |   Sowing Dates. The sowing dates in the DLEM 
v4.0 were dynamically simulated rather than prescribed. 
These dates depend on the sowing trigger criteria modified 
from CLM4.5 within the earliest and latest planting win-
dows (You et  al.  2022). The earliest and latest state- level 
crop- planting dates were obtained from the United States 
Department of Agriculture National Agricultural Statistics 
Service (USDA- NASS) survey report (USDA NASS  2010), 
which provides planting and harvesting windows for most his-
torical years. If environmental stress makes sowing imprac-
tical within the planting window, the model will suspend 
planting for that year. Consequently, wheat exposure to 
dry- heat conditions varies annually with changes in sowing 
dates. Furthermore, the planting window for spring wheat is 
typically concentrated in spring, leading to its critical growth 

and developmental stages being consistently exposed to high 
temperatures and water scarcity during summer (even with 
delayed or advanced sowing dates). Therefore, it is foreseeable 
that spring wheat is inevitably more exposed to dry heat stress 
than winter wheat.

2.2.1.3   |   Planted Area and Crop Rotation. Wheat pro-
duction was calculated based on wheat yield and a dataset 
of dynamically changing annual planting areas. This dataset, 
encompassing annual crop types and crop rotation patterns 
from 1960 to 2018, was developed by combining the 30- m Crop-
land Data Layer product (CDL) from the United States Depart-
ment of Agriculture (USDA) and the National Agricultural 
Statistics Service (NASS) survey of county- level crop plant-
ing areas using the spatialization method of Yu et  al.  (2018). 
We extracted the annual dynamic distribution and planting 
area of wheat from the crop- rotation maps and allocated them 
to a 5- arcmin spatial grid. Additionally, the dataset was uti-
lized to simulate variations in GHG emissions resulting from 
land- use changes.

2.2.1.4   |   Manure and Nitrogen Fertilizer. According 
to Cao et  al.  (2018), annual crop- specific nitrogen usage data 
from 1910 to 2018 were reconstructed using state- level nitrogen 
use rates from the USDA- NASS and national- level commercial 
nitrogen consumption data from the USDA- ERS (2019). Annual 
manure nitrogen application data from 1860 to 2018 were 
obtained from Bian et al. (2021).

2.2.1.5   |   Irrigation. Annual crop- specific irrigation data 
from 1950 to 2018 were downscaled based on county- level irriga-
tion reanalysis data (McManamay et al. 2021) and county- level 
irrigated cropland areas from the USDA- NASS using the MODIS 
Irrigated Agriculture Dataset as a baseline.

2.2.1.6   |   Tillage. Annual tillage intensity data from 1960 
to 2018 were reconstructed using county- level tillage prac-
tice survey data from the National Crop Residue Management 
(CRM) Survey. Tillage maps for missing years were assumed to 
be the same as those from the nearest available years. We reor-
ganized the original five tillage practices in the CRM dataset 
into four types by combining ridge-  and mulch- till practices 
with conservation tillage in the DLEM v4.0. The historical spa-
tial distribution of tillage practices was estimated by integrating 
the county- level CRM dataset with crop rotation maps derived 
from the CDL and crop planting area data from the USDA- NASS.

2.2.1.7   |   Other Meteorological Data. Two additional inde-
pendent gridded meteorological datasets, Livneh and ERA5, 
were used for the uncertainty analysis of dry- heat sensitivity. 
The Livneh hydrometeorological dataset consists of gridded 
daily precipitation, maximum and minimum air temperature, 
and wind speed for the continental U.S. at a 1/16° resolution 
(Livneh et al. 2015). The updated dataset extends the time range 
to 2018, matching the period of this study. The ERA5 reanalysis 
dataset, provided by the European Centre for Medium- Range 
Weather Forecasts, offers global meteorological data at a 
0.25° resolution for the period 1960–2018. Both datasets were 
re- interpolated to a 5 arcmin resolution using bilinear interpo-
lation to match the original resolution and assess wheat GHGI 
sensitivity to dry- heat climates.

 13652486, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70349, W

iley O
nline L

ibrary on [11/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5 of 20

2.2.2   |   Field Observations and Statistics

We conducted a comprehensive literature search of Google 
Scholar and Web of Science to identify peer- reviewed publica-
tions reporting site- scale wheat yields and soil GHG emissions 
in US croplands. The search keywords included “cropland or 
crop or wheat,” “the United States or America or U.S. or USA”, 
“soil organic carbon or SOC,” “methane or CH4,” “nitrous oxide 
or N2O,” and/or “greenhouse gases or GHG.” The identified pa-
pers were refined based on the following criteria to ensure data 
quality: (1) measurement in the field rather than in the labora-
tory; (2) supplemental information, such as cropping systems, 
experimental duration and conditions, and management prac-
tices (e.g., nitrogen fertilizer, tillage types, and irrigation); and 
(3) replicated field experiments. We identified annual data from 
141 site- years across 42 locations (Figure  1a and Figure  S2), 
comprising 73 observations for yield, 32 observations for GHG 
emissions (N2O and CH4), and 36 observations for SOC stock 
(Table  S3). These observations encompassed various manage-
ment practices, including tillage (NT and CT), nitrogen fertil-
izer use, and irrigation. WebPlotDigitizer software was used to 
extract precise values when the data were presented graphically.

Wheat production statistics from 1960 to 2018 were collected 
from the USDA to evaluate the performance of DLEM v4.0, 

to simulate annual spatial variations in wheat production. 
Moreover, we employed wheat yield reports from 1960 to 2018 
derived from the Southern Regional Performance Nursery, 
Northern Regional Performance Nursery, and Hard Red Spring 
Wheat Uniform Regional Nursery to examine dry- heat- driven 
sensitivity; this included 29 sites for winter wheat and 23 sites 
for spring wheat (Zhang et al. 2022). These sites cover the US 
Great Plains, subjected to less than 5% irrigation (Zhu and 
Burney 2021; Zhang et al. 2022). Common wheat varieties were 
used in this study (Kharkof for winter wheat and Matquis for 
spring wheat).

2.3   |   Model Calibration and Validation

The DLEM has been widely validated and applied to estimate 
N2O and CH4 emissions, as well as SOC stocks across multi-
ple sites and large- scale regions (Tian, Chen, et al. 2010; Tian, 
Xu, et al. 2010; Ren et al. 2012; Yu et al. 2018; Lu et al. 2022). 
It has also contributed to the Global Carbon Project for re-
gional carbon and nitrogen cycle assessments (Friedlingstein 
et  al.  2023; Tian et  al.  2024). In this study, we rigorously 
calibrated and validated DLEM v4.0 using the environmen-
tal driver datasets outlined in Section  2.2.1 to better sim-
ulate SOC stocks and N2O and CH4 emissions in US wheat, 

FIGURE 1    |    Spatial distribution of site observations and model validation. (a) Site- level observations of annual N2O, CH4, SOC, and yield for wheat 
in the USA. The color gradient indicates the relative site order across all observations. The bubble size reflects the number of observations at each site. 
(b) Comparison between model- simulated production and observed production. (c–e) Site- level comparisons between model simulations and obser-
vations for greenhouse gases (c, N2O and CH4), SOC stock (d), and yield (e). The dashed and solid lines in each scatter plot represent the 1:1 line and 
the linear regression between observed and simulated values, respectively. Shaded bands indicate 95% confidence intervals for the mean predictions. 
Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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leveraging field observations compiled from the metadata de-
scribed in Section  2.2.2. In addition, we output simulations 
corresponding to the soil depths for validation because of the 
measurements of soil carbon stocks collected across varying 
soil depths (e.g., 0–15 cm or 0–30 cm). The coefficient of de-
termination (R2), root mean square error (RMSE), and nor-
malized root mean square error (nRMSE) were employed to 
quantify the model performance.

Observations from 141 site years representing 42 U.S. sites 
covering major wheat cropping systems were used to cali-
brate, validate, and corroborate model simulations (Figure 1 
and Figure S2). Specifically, we initially ran the model using 
default parameters and subsequently manually adjusted 
the parameter values within the reported range to achieve 
a close match between the observed and simulated values. 
During calibration, data from 15, 6, and 7 site years (approxi-
mately 20% of the original dataset) were used for yield, GHGs 
(N2O and CH4), and SOC stocks, respectively (Figure  S3). 
Calibration for yield and GHGs was conducted separately for 
different tillage practices (NT and CT). Therefore, a parameter 
set from the calibration dataset that minimized the discrep-
ancy between simulated and observed values was applied to 
regional validations.

After calibration, the remaining 80% of the field data were used 
to validate the model's regional simulations (Figure  1). We 
specifically focused on evaluating the model's performance in 
simulating the tillage effects on yield and GHGs. Therefore, addi-
tional validation was conducted under different tillage practices 
to compare their effects and simulation accuracy (Figure S4).

Finally, we performed a time- series validation for production 
and GHGs (N2O and CH4) to assess the model's performance in 
simulating seasonal and interannual fluctuations. Interannual 
crop production statistics were obtained from the USDA- NASS 
(Figure S5). Seasonal GHG observations were derived from long- 
term site measurements at the Kellogg Biological Station Long- 
term Ecological Research site (Figure S6). Wheat was planted at 
the ecological research station in 1995, 1998, 2001, 2004, 2007, 
2010, and 2013, with continuous in  situ measurements using 
static chambers and gas chromatography.

2.4   |   Experimental Design

The implementation of DLEM v4.0 consists of three main steps: 
an equilibrium run, a spin- up run, and a transient run. The 
equilibrium run was driven by decadal average climate data 
during the 1860s period and other factors such as vegetation 
type, atmospheric CO2 concentration, and nitrogen deposition. 
The model assumes equilibrium is reached when changes in car-
bon, nitrogen, and water pools are less than 0.5 g C m−2 year−1, 
0.5 g N m−2 year−1, and 0.5 mm m−2 year−1 over two consecutive 
20- year periods, respectively. The spin- up run was conducted 
using detrended climate data from the 1860s to stabilize the 
fluctuations arising from the transition between the equilibrium 
and transient runs. Finally, the transient run was driven by his-
torical data from 1860 to 2018, with simulations considered rep-
resentative of real- world changes. In this study, we focused on 
simulation results from 1960 to 2018, and model runs from 1860 

to 1959 were considered as representing the slow accumulation 
of soil biogeochemical cycling.

We conducted 11 simulation experiments to determine the yield 
and GHG emission variations of US wheat (spring and winter 
wheat) induced by climate, CO2, land use and cover change (in-
cluding crop rotations), nitrogen deposition, tillage, irrigation, 
and nitrogen fertilizer and manure application from 1860 to 
2018 (Table  S4). Specifically, the first simulation experiment 
(S1) keeps all drivers constant from the earliest available years. 
The second simulation experiment (S2) represents the optimal 
estimates of yield and GHG emissions in the US States driven 
by historical force inputs. The net yield and GHG variations 
driven by all factors were estimated as the difference between 
S1 and S2: Other experiments (S3–S9) were set with a driver that 
did not vary with time for each simulation (Table S4), and the 
contribution of the individual driver was acquired based on the 
results of “optimal estimates” (S2) minus “all- drivers- without- 
one” (S3–S9). We also used the difference between S10 and S11 
to quantify the effects of land use and land cover change (LULC, 
specifically referring to crop rotation), as changes in land cover 
may also influence inputs to agricultural management practices 
(such as nitrogen fertilizer and manure). Hence, for the two ex-
periments, we maintained all management practices in 1860 to 
differentiate the contribution of LULC without management. 
Furthermore, two tillage scenarios were designed to simulate 
the potential effects of tillage practices on wheat yield and GHG 
emissions, where tillage practices were fixed as NT and CT (S12 
and S13).

The sum of net GHGs from wheat soils was calculated based on 
the global warming potential (GWP) of CO2, CH4, and N2O on 
a 100- year time scale from gram carbon and gram nitrogen to 
gram CO2 equivalents (IPCC 2021). Specifically, the GWP is the 
sum of the CO2 equivalents from the SOC sequestration of CO2, 
N2O, and CH4 emissions in wheat croplands:

where FCO2
, FN2O

, and FCH4
 represent CO2 (Tg C year−1), N2O 

(Tg N year−1), and CH4 (Tg C year−1) fluxes, respectively. ECO2
,  

EN2O
 , and ECH4

 are the CO2, N2O, and CH4 emissions in Tg 
CO2 equivalents. Y , EGHG, and GHGI denote wheat production 
(Tg year−1 for total production; kg ha−1 for yield), net GHG 
emissions (Tg CO2- eq year−1 for total emissions; kg CO2- eq ha−1 
for emissions per unit area), and GHG emission intensity 
(kg CO2- eq kg−1), respectively.

2.5   |   Extreme Dry- Heat Conditions

This study aimed to investigate how the carbon- nitrogen cycle 
in wheat production responds to changes in extreme dry- heat 

(1)ECO2
=
(
FCO2

∕12
)
× 44

(2)EN2O
=
(
FN2O

∕28 × 44
)
× 273

(3)ECH4
=
(
FCH4

∕12 × 16
)
× 27

(4)EGHG = ECO2
+ EN2O

+ ECH4

(5)GHGI = EGHG ∕Y
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conditions (EDHs) under ongoing climate warming. To this 
end, we used the daily maximum temperature to characterize 
variations in heat conditions (HC), following the guidelines set 
by CCl/CLIVAR/JCOMM Expert Team on Climate Change 
Detection and Indices. Specifically, HC is defined as the number 
of days when the daily maximum air temperature exceeds 30°C 
for the period from March 1 through September 30 in each year 
(equation 6). This temperature threshold significantly surpasses 
the upper limit of the optimal temperature for photosynthesis in 
the absence of irrigation.

where Tmax i denotes the daily maximum air temperature on  
i- th day between March and September, and N represents the 
total number of days in this period.

Additionally, we characterized dry conditions (DC, i.e., environ-
mental water scarcity) using the aridity index (AI), calculated at 
daily intervals as the ratio of daily precipitation (P, mm year−1) 
to potential evapotranspiration (ETP, mm year−1). Specifically, 
DC is defined as the number of days when the AI falls below 0.2 
for the period from March 1 through September 30 in each year 
(equation  10). An AI value below this threshold signifies the 
onset of aridity at a given time and location and is widely applied 
to identify the global occurrence of aridity conditions (Middleton 
and Thomas 1992; Berg and McColl 2021; Shi et al. 2021). ETP 
was calculated using the well- known Hargreaves model, which 
is constrained by solar radiation and temperature (Hargreaves 
and Samani 1982; Shi et al. 2020). Previous studies proved that 
air temperature and solar radiation can capture more than 80% 
of ETP variations (Almorox et al. 2015; Shi et al. 2020). The for-
mulae are parameterized as follows:

where Ra, Tmax, and Tmin are the extraterrestrial solar radiation 
(MJ m−2 d−1), maximum air temperature (°C), and minimum air 
temperature (°C), respectively; T (°C) is the mean daily air tem-
perature at a height of 2 m; S0 is solar constant (118.02 MJ m−2 
d−1); r is the Earth- Sun distance; r0 is the mean Earth- Sun dis-
tance; H is sun hour angle at sunset; � is latitude (°); and � is 
solar declination (°). AIi denotes the aridity index on i- th day 
between March and September, and N represents the total num-
ber of days in this period. For the compound effects of dry- heat 
conditions (CDHC), we defined them as the number of days with 
simultaneous dry and heat conditions for the period from March 
1 through to September 30 in each year (equation 11). This ap-
proach has been extensively utilized in previous studies of com-
pound events, and thus, we did not consider cascading effects 

between dryness and heat in this study. CDHC is parameterized 
as follows:

2.6   |   Sensitivity to EDHs 
and Environment- Specific Tillage Scheme

The crop GHGI sensitivity to EDHs is typically described as a 
coupling relationship in terms of direction and magnitude be-
tween the GHGI and EDHs within specific periods. Here, we 
adopted the Pearson correlation coefficient (R) to characterize 
the sensitivity variation between EDHs (HC, DC, and CDHC) 
and wheat GHGI (yield and GHGs). The sign of R indicates the 
direction of sensitivity, whereas its magnitude signifies the sen-
sitivity strength. To detect spatiotemporal trends in the GHGI 
sensitivity to EDHs, we employed linear regressions based on 
Pearson correlations from a 20- year moving window method 
over a six- decade period (1960–1979 to 2009–2018). Specifically, 
all the applied variables were linearly detrended during the six- 
decade period. Then, all correlation results in a given time win-
dow were indexed to the previous year; that is, REDH- GHGI in 1979 
represents the correlation between EDHs and wheat GHGI from 
1960 to 1979. Finally, we calculated the slope and significance 
(p- value) in each grid using the linear regression method to an-
alyze significant trends (p < 0.05). In addition, for the sensitivity 
variations of whole regions, we used the Mann- Kendall's test to 
detect overall trends and significance, which does not require 
data with normal distribution. Based on the same approach, we 
calculated the spatiotemporal patterns of the GHGI sensitivity 
under different tillage scenarios (CT and NT, Table S4).

From the perspective of decreasing sensitivity, the benefits of 
environment- specific tillage in resisting dry- heat events were fur-
ther explored. Initially, the effects of tillage practices were defined 
as the differences between the annual sensitivity variations under 
the actual scenario with all drivers and those under the tillage 
scenarios. For specific grids and sliding windows, the changes in 
sensitivity between tillage scenarios (S12 and S13 in Table S4) and 
the actual scenario (S2 in Table S4) were determined as effects 
induced by alterations in tillage practices (NE, negative effect; PE, 
positive effect). The specific rules are as follows.

where DYt−a, DGHGt−a, and DGHGIt−a represent the sensitivity 
differences in yield, GHG emissions, and GHGI between the 
tillage and actual scenarios in each 20- year moving window, 

(6)HC =

N∑
i= 1

{
1 Tmax i>30

◦C

0 otherwise

}

(7)AI = P ∕ETP

(8)ETp = 0.0023 × 0.408Ra ×
(
Tmax −Tmin

)0.5
× (T + 17.8)

(9)Ra =
S0
�

( r0
r

)2
(H sin� sin � + sinH cos� cos �)

(10)DC =

N∑
i= 1

{
1 AIi<0.2

0 otherwise

}

(11)CDHC=

N∑
i=1

{
1 Tmax i>30

◦C & AIi<0.2

0 otherwise

}

(12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if DYt−a>0, PE

if DYt−a<0, NE

if DGHGt−a>0, NE

if DGHGt−a<0, PE

if DGHGIt−a>0, NE

if DGHGIt−a<0, PE
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8 of 20 Global Change Biology, 2025

respectively. Moreover, the frequency of tillage effects (PE or 
NE) between 1960–1979 and 2009–2018 was quantified to as-
sess the overall tillage impact. For example, if the occurrence 
frequency of positive effects falls below 50%, the region is pre-
dominantly governed by the negative consequences of tillage.

A significant effect zone was defined when the occurrence 
frequency of positive tillage effects exceeded 75%, indicating 
that particular tillage practices have a probability greater than 
75% for mitigating dry- heat sensitivity in wheat. If tillage ef-
fects remain positive across all moving window periods, tillage 
practices in these specific areas can fully mitigate the negative 
impacts of extreme dry heat events.

Therefore, the implementation of tillage practices in specific 
grids was determined based on significant effects (occurrence 
frequency of positive effects > 75%) of tillage practices (NT or 
CT). Optimal tillage maps were generated by superimposing the 
spatial distribution of the significant effects arising from the dif-
ferent tillage practices (NT and CT). Finally, we utilized these 
tillage maps to simulate changes in the sensitivity of yield, GHG 
emissions, and GHGI to EDHs, to characterize the potential of 
climate- adapted tillage practices.

2.7   |   Uncertainty Analysis

The dry- heat conditions derived from a single meteorological 
dataset may influence the estimation of sensitivity trends and 
magnitudes, potentially limiting the generalizability and ro-
bustness of the findings. Moreover, the sensitivity of GHGs to 
EDH climate using Pearson's correlation may be inadequate 
for capturing potential non- linear relationships between these 
variables. To address these limitations, we introduced two addi-
tional independent meteorological datasets (Livneh and ERA5) 
and employed non- linear methods (Kendall and Spearman cor-
relations) for comparative analysis. We integrated all datasets 
and methods to generate nine sets of sensitivity results, provid-
ing a comprehensive basis for uncertainty analysis. The uncer-
tainty in the simulated sensitivity was expressed as the standard 
error (SE):

where s and n represent the standard deviation and sample size, 
respectively.

We previously conducted parameter sensitivity tests for DLEM 
v4.0 using a Monte Carlo sampling approach to evaluate its 
performance in simulating N2O, CH4, and SOC. Specifically, 
based on the probability distribution functions, parameters 
were randomly varied within 20% of their calibration values to 
generate 100 sets of parameter scenarios. The parameter sets 
were used as inputs for the DLEM to simulate wheat carbon 
and nitrogen balances and to compute standard deviations. 
The parameter sensitivity results previously presented by You 
et  al.  (2024) are not shown again in this study. Additional 
parameter sensitivity analyses and more detailed validation 
of the LAI and aboveground biomass are outlined by You 
et al. (2022).

3   |   Results

3.1   |   Model Performance Evaluation

We rigorously calibrated and validated the DLEM to simulate 
net GHGs (N2O, CH4, and CO2) and wheat yield at both site and 
regional scales, with a particular focus on model performance 
across different tillage practices (NT and CT). For site- level cal-
ibration, 20% of the 141 collected observations (73 for yield, 32 
for GHGs, and 36 for SOC stock) were randomly selected. The 
calibrated model demonstrated robust performance, achieving 
R2 values of 0.56 for yield, 0.67 for SOC stock, and 0.85 for GHG 
emissions (Figure S3). Validation with the remaining data indi-
cated that the model explained 66%, 64%, and 52% of the vari-
ance (R2) in net GHGs, SOC, and wheat yield at the regional 
level, respectively (Figure 1c–e). The model effectively captured 
wheat productivity and emissions across varying yield condi-
tions, exhibiting low simulation error relative to observational 
data (Figure 1). Although there were occasional discrepancies 
in the N2O simulations, the majority of simulated values closely 
approximated the observed data.

Next, model simulations under CT and NT management prac-
tices were compared with field observations (Figure  S4). The 
results showed that the calibrated model reliably reproduced 
wheat yield, SOC, and GHG emissions (primarily N2O) under 
NT and CT practices, showing close agreement with observa-
tions and strong correlations (Figure S4). This further confirms 
the model's effectiveness in simulating wheat productivity and 
associated GHG emissions under contrasting tillage practices.

Finally, we compared interannual and seasonal variations in 
GHG emissions and yield between measured and simulated 
values using annual national production statistics and observa-
tions from a long- term ecological research site (Figures S5 and 
S6). The calibrated model accurately simulated the magnitude 
of national production (R2 = 0.64, Figure  1b) and captured in-
terannual variability in survey data (Figure S5). Moreover, the 
model performed well in estimating seasonal variations in soil 
N2O and CH4 fluxes at a wheat experimental site (Figure S6). 
While a few observations deviated from simulated values, these 
discrepancies were likely associated with greater uncertainty, 
potentially due to systematic errors in the original experimental 
design involving four replicates.

3.2   |   US Wheat GHGI Magnitudes and Trends 
From 1960 to 2018

Our simulation results showed that US wheat production has 
contributed an estimated 55.6 Tg of production per year (72.3% 
from winter wheat and 27.7% from spring wheat, Figure  2a) 
and 5.6 Tg of GHGs per year (88.0% from winter wheat and 
12.0% from spring wheat, Figure 2b) over the past six decades. 
The production, net GHG, and GHGI of winter wheat in-
creased substantially from 1960 to 1990 but experienced a sig-
nificant decline from 1990 to 2018 (Figure 2a–c, and Table S5). 
In comparison, spring wheat showed a marked increase in the 
GHGI owing to significant increases in GHGs and production 
during this period (Figure S3 and Table S5). The spatial pat-
terns of GHGs and yield for winter wheat showed considerable 

(13)SE =
s√
n
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heterogeneity, with higher GHGI and net GHGs distributed 
in the central southern US, which coincided with regions of 
high yield from 1960 to 2018. Conversely, winter wheat in the 
northern US acts as a GHG sink, resulting in a decrease in the 
GHGI (Figure  2). In addition, there was a negative trend in 
spring wheat production after 1990, in sharp contrast to the 
significant increase observed over the preceding three de-
cades (Figure S7a). Overall, the GHG emissions and yields of 
spring wheat were much lower than those of winter wheat, 
and no prominent cold or hot spots were observed in the spa-
tial patterns (Figure S7).

3.3   |   Attribution Analysis of Variations in GHG 
Emissions and Yield From 1960 to 2018

We conducted an attribution analysis based on a set of simu-
lation experiments to investigate the impacts of climate, CO2, 
LULC, nitrogen deposition, and agricultural management 
practices on US wheat yield and GHG emissions from 1960 to 
2018, with the experimental design described in Section  2.4 
and Table  S4. The results showed that climate change and 
nitrogen fertilization (Nfer) were the dominant drivers of 
changes in GHG emissions and yield across the region (ex-
cluding the impact of LULC on yield). Anthropogenic tillage 
practices and atmospheric CO2 fertilization played more sig-
nificant roles in certain parts of the wheat- growing regions 
(Figure  3). We also conducted a further analysis of two dis-
tinct periods, 1960–1990 and 1990–2018, which revealed that 
Nfer, LULC, and tillage management were the key factors in-
fluencing temporal variations in GHG emissions and winter 
wheat production over time.

Specifically, the contributions of Nfer and LULC to the total 
GHG emissions of winter wheat increased before the 1990s 
but declined over the subsequent three decades (Figure  3). 
This trend closely aligns with the changes in harvested area 
and total nitrogen fertilizer inputs, which first increased and 
then decreased (Figures S8 and S9). Therefore, the substantial 
decline in harvested area and total nitrogen fertilizer inputs 
since the 1990s has significantly driven the decrease in the 
contributions of LULC and nitrogen fertilizer use to produc-
tion and GHG emissions (Figures S8 and S9). With little effect 
on production, changes in tillage practices led to a substantial 
increase in GHG emissions from 1990 to 2018 by offsetting 
emission reduction efforts due to reduced nitrogen fertilizer 
use (Figure  3a,c). Unlike winter wheat, LULC did not con-
tribute to increased GHG emissions from spring wheat, and 
Nfer and climate change were the primary factors driving 
the changes in net GHG emissions and production over time. 
However, LULC plays an essential role in spring wheat pro-
duction. The increased production of spring wheat was dom-
inated by climate, Nfer, and LULC during the 1960s and the 
1990s (Figure 3b,d). After the 1990s, LULC hindered spring 
wheat production (Figure 3d), which decreased significantly 
(Figure S7).

We further quantified the influence of multiple environmen-
tal factors on individual GHG emissions (N2O, CO2, and CH4), 
along with the spatial patterns of GHG emissions induced by 
historical tillage practices (Figure S10). For winter wheat, ni-
trogen fertilizer application predominantly drove variations 
in N2O emissions (Figure  S10b), whereas historical climate 
variability controlled the net CO2 and CH4 emissions across 
the US (Figure  S10d,f). Similarly, net emissions of N2O and 

FIGURE 2    |    Spatial–temporal variations in production, net greenhouse gas (GHG) emission, and GHG emission intensity for winter wheat in 
the United States (1960–2018). Results were simulated using the Dynamic Land Ecosystem Model (v4.0). Line graphs show trend lines for two sub- 
periods (1960–1990 and 1990–2018) and the entire period (1960–2018), which are represented by two solid blue lines and one solid red line, respec-
tively. Shaded bands indicate 95% confidence intervals for the mean predictions. Negative values for GHG emission and GHG emission intensity in 
each graph indicate uptake. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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10 of 20 Global Change Biology, 2025

CO2 were primarily influenced by increased nitrogen fertil-
izer application in spring wheat. Over the past 60 years, tillage 
practices have primarily affected variations in CO2 emis-
sions throughout US wheat- growing regions (Figure S10g,h). 

Additionally, tillage activities contributed to the observed 
proportion of N2O net emissions in the winter wheat- growing 
areas, particularly in the central and western coastal regions 
(Figure S10h).

FIGURE 3    |    Spatial–temporal contribution of multi- environmental factors to net greenhouse gas (GHG) emissions and yield for wheat in the 
United States. Spatial–temporal patterns of dominant factors for winter wheat (panels a and c) and spring wheat (panels b and d) from 1960 to 2018 
were derived from scenario- based simulations. The contribution of each environmental factor was quantified as the difference between the all- 
drivers scenario and the corresponding single- factor scenario, as detailed in the experimental design (Section 2.4 and Table S4). The maps illustrate 
the spatial contributions of environmental factors to wheat emissions per unit area and yield, while the bar plots summarize their contributions to 
total wheat emissions and production. The direction of the black triangle in the bar plots indicates the variation in the contribution of environmental 
factors to net GHG emissions and wheat production during specific periods. Ndep: Nitrogen deposition; LULC: Land use and land cover change; and 
Nfer: Nitrogen fertilizer application. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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3.4   |   Sensitivity of Wheat GHG Emissions 
and Yield to Extreme Dry- Heat Events

Over the past six decades, US wheat- growing regions have ex-
perienced varying levels of EDHs, with more than 75% of the 
growing regions at risk of aridity occurrence (Figure S11). The 
risk of high temperatures and compound events with arid-
ity also increased from north to south along the latitudinal 
distribution (Figure  S11). Although no significant temporal 
trend was observed in heatwave events and their compounds 
at high temperatures (Figure  S11), the wheat- growing regions 
experienced consistent drying. From 1960 to 2018, there were 
substantial increases in the aridity periods for winter wheat 
(2.3 days/10 years, p < 0.01) and spring wheat (1.6 days/10 years, 
p < 0.01) (Figure  S11c). Consequently, the frequency of com-
pound dry heat events may increase in the future, further exac-
erbating potential carbon losses.

EDHs have exacerbated GHGI in a significant portion of winter 
(~70%) and spring wheat (~90%) regions across the US (Figure 4). 
This adverse effect caused by extreme climates is particularly 
evident in the central Great Plains region of the US (Figure 4). 
Dry- heat events caused an increase in net GHG emissions from 
1960 to 2018 in 67.7% ± 7.4% of winter wheat- growing regions 
and 91.3% ± 1.9% of spring wheat- growing regions (Figure S12). 
Across the wheat region, high- temperature events had a more 
significant negative impact on GHG emissions than aridity 

(Figure  4 and Figure  S12). The projected increase in aridity 
could further amplify adverse effects on GHGs (Figure  4 and 
Figure S11). EDHs triggered CO2 and CH4 release from winter 
wheat but suppressed N2O emissions (Figure  S13). Given that 
the total CH4 emissions in the wheat- planted areas were neg-
ligible, the CO2 emissions induced by EDHs contributed the 
most to GHG emissions. In contrast, more GHGs from spring 
wheat have been attributed not only to EDHs that cause large 
CO2 emissions but also to aridity events that release more N2O 
(Figure S14).

Increasing EDHs resulted in significant reductions in wheat 
yield, particularly in the central–southern US (Figure S12). The 
impact of dry- heat conditions on yield was also evident in most 
regions, with 76.7% ± 0.7% of winter wheat- production regions 
and nearly 86.9% ± 13.7% of spring wheat- production regions ex-
periencing reduced yields (Figure S12d–f). While modest aridity 
may be beneficial for spring wheat grown in the northern re-
gions of the US, this advantage is likely to diminish as the area 
becomes more arid (Figure S12j–l).

3.5   |   Sensitivity Variations in Wheat GHG 
Emissions and Yield to Extreme Dry- Heat Events

Varying temporal dynamics in wheat production sensitivity to 
EDHs were observed in spring and winter wheat (Figure  5). 

FIGURE 4    |    Sensitivity of wheat greenhouse gas (GHG) emission intensity to dry- heat events from 1960 to 2018. Pearson correlation coefficients 
(R) are used to reveal the sensitivity of GHG emission intensity to dry- heat events. The box plots summarize the distribution of pixel- level sensitivity 
values (x- axis) derived from gridded maps, separately aggregated for regions showing negative (green) and positive (purple) responses of GHGI to 
EDH. The percentages adjacent to each box indicate the proportion of the wheat- growing region exhibiting each response type. In each boxplot, black 
triangles indicate mean values and black points denote outliers. WW (panel a–c) and SW (panel d–f) are winter wheat and spring wheat, respective-
ly. DC, HC, and CDHC represent heat, dry, and compound dry- heat conditions, respectively. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.
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12 of 20 Global Change Biology, 2025

Specifically, the sensitivity of wheat GHGs to EDHs has inten-
sified over the years, resulting in a significant increase in the 
GHGI (Figure 5). The sensitivity of GHGs in spring wheat has 
significantly increased over the past six decades under EDHs, 
and the sensitivity of winter wheat after 2008s also showed a 
significant increase (p < 0.01; Figure 5a,d). Aridity- related neg-
ative effects are approaching or even exceeding those at high 
temperatures for wheat GHGs and their intensities (Figure 5). 
Although the detrimental impact of dry heat on winter wheat 
yield steadily weakened statistically (p < 0.01), adverse effects 
for spring wheat significantly increased, especially for aridity 
under sustained drying (Figure 5b,e).

The sensitivity dynamics of the wheat GHGI to EDHs also ex-
hibited distinct regional characteristics (Figure  6). Across US 
wheat regions, the negative impacts of EDHs on wheat GHGs 
in 2018 (the last year in the 20- year sliding window; also ap-
plies to the remaining text) were considerably higher than 
those in 1979 (Figures  S15a, S16a, and S17a). This resulted in 
a more dramatic wheat GHGI controlled by EDHs than it was 
60 years ago (Figure 6). Moreover, the adverse impacts of EDHs 
increased significantly over time in the south- central US of the 
winter wheat planted regions and the majority of spring wheat 
planted regions (Figure 6, Figures S15b, S16b, and S17b). A few 
sporadic regions are favored by dry- heat climates, such as the 
northern areas of winter wheat and the western areas of spring 
wheat. Significant increases (p < 0.05) in GHGI sensitivity to 
EDHs were observed in 32.3% ± 1.7% of winter wheat areas and 
58.8% ± 1.8% of spring wheat areas in the US, indicating that 

climate costs in wheat under dry- heat conditions were further 
amplified over time (Figure 6). Additionally, the probability dis-
tribution revealed that aridity had a more detrimental impact on 
the GHGI in recent years than heat waves and their combined 
effects (Figures S15b, S16b, and S17b). This trend was evident 
across a broader region of the US.

Significant regional trends underscored that the impact of EDHs 
on yield shifted from positive to negative in the eastern spring 
wheat region and caused yield fluctuations in other regions 
(Figures  S15a, S16a, and S17a). In contrast, the sensitivity of 
winter wheat yields to EDHs showed large regional heteroge-
neity. This was also confirmed by the results derived from 29 
winter wheat and 23 spring wheat nursery statistics spanning 
1960–2018 (Figure  S18). At most experimental stations, the 
wheat yields experienced negative dry- heat climate shocks (e.g., 
20 of 29 winter wheat observations and 15 of 23 spring wheat ob-
servations under a compound climate). Significant increases in 
negative impacts on yield under dry- heat climate were observed 
at 29.9% and 27.5% of stations (Figure S18).

3.6   |   Potential of Environment- Specific Tillage 
Practices in Mitigating Negative Impacts of EDHs 
on GHGI

We first assessed the impact of switching from historical till-
age to specific tillage practices (CT and NT) on GHG emis-
sions (Figures S19 and S20). Our findings demonstrate that the 

FIGURE 5    |    Temporal dynamics in the sensitivity of wheat GHG emissions (kg CO2- eq/ha) and yield (kg/ha) to dry- heat conditions across the 
United States. Net GHG emissions (panels a and d) of winter wheat (a–c) and spring wheat (d–f), as well as their yield (panels b and e) and GHG 
emission intensity (panels c and f) under dry- heat conditions are shown. The annual sensitivity variations were calculated as the median value from 
spatial grids. In panel (a), the dashed line represents the year 2008, while the solid lines indicate the loess regression fitting. Shaded bands indicate 
95% confidence intervals for the mean predictions. Symbols indicating the significance test of trends are as follows: #p > 0.05, *p < 0.05, and **p < 0.01. 
DC, HC, and CDHC represent heat, dry, and compound dry- heat conditions, respectively.
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adoption of CT across the entire wheat- growing region resulted 
in a substantial release of N2O and CO2 (Figures S19a,c and 
S20). Even with the transition to NT, the CO2 emissions from 
spring wheat could not be completely avoided (Figure S19d). 
However, NT presents a greater opportunity to reduce N2O 
emissions, particularly for spring wheat (Figure  S19b,d). 
The negative effects of switching between individual tillage 
practices extended throughout the wheat- growing region. 
Consequently, untimely tillage practices hinder food produc-
tion and contribute to GHG emissions at spatial–temporal 
scales. To address these gaps, we developed an optimal tillage 
scheme based on spatiotemporal and environment- specific 
conditions to mitigate the negative impacts of dry- heat events 
on the GHGI.

Specifically, this tillage was designed as a choice between CT 
and NT, depending on the optimal mitigation effects under spe-
cific historical and location- based dry- heat conditions. Our re-
sults demonstrate that both CT and NT had comparable effects 
in decreasing the GHGI sensitivity in the winter wheat region, 
whereas NT had a greater impact in the spring wheat region 

(Figure 7). Specifically, an analysis of 60 years of data revealed 
that the synergistic effects of CT and NT significantly reduced 
the heat sensitivity of winter wheat in the central United States. 
Notably, NT showed more remarkable performance in the 
northern region of winter wheat (Figure  7) and played a pre-
dominant role in over 90% of the spring wheat- growing regions 
(Figure  7b). Tillage practices that decreased GHGI sensitivity 
to EDHs by over 75% were recommended as an optimal tillage 
scheme in specific regions, indicating the robustness of tillage 
strategies for decreasing climate costs under worsening future 
dry- heat events. Thus, the recommended CT and NT practices 
were intermingled in the central region of the US, whereas 
NT was more highly recommended in the northern region 
(Figure 7). The regions implementing optimal tillage practices 
account for ~32.8% (27.5%–41.5%) of spring wheat- growing re-
gions and ~28.8% (26.7%–30.6%) of winter wheat- growing re-
gions across the US. Nonetheless, some areas were not included 
in the recommended tillage scheme, which means that potential 
tillage practices failed to mitigate the dry heat dependence of the 
GHGI in these regions, necessitating other options to bridge this 
gap (Figure 7).

FIGURE 6    |    Spatial patterns of GHGI sensitivity variations to dry- heat conditions for winter wheat (panels a–c) and spring wheat (panels d–f). 
The panels show sensitivity variations under dry (a, d), heat (b, e), and compound dry- heat conditions (c, f). Linear trends and their significance are 
calculated at the pixel level. The probability density plots below each map summarize the distribution of classified pixels, with x- axis values 1–4 (red) 
and 5–8 (blue) indicating increasing and decreasing sensitivity, respectively. Higher values reflect stronger statistical significance, and orange and 
blue bands highlight regions with significant changes (p < 0.05). These classifications correspond to the color bands in the maps. Map lines delineate 
study areas and do not necessarily depict accepted national boundaries.
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The implementation of environment- specific tillage schemes 
has demonstrated a significant reduction in the sensitivity of 
wheat GHGs to dry- heat conditions, which amounted to ~6.5% 
for spring wheat (3.4%–12.2%) and ~8.1% for winter wheat 
(4.4%–13.6%), respectively, across the US (Figure  8). However, 
the benefits of this tillage practice are limited. Co- alterations 
between GHGs and yield dependence drive further decreases 
in GHGI sensitivity, leading to a reduction of ~9.8% for spring 
wheat (5.8%–17.7%) and ~13.3% for winter wheat (8.0%–20.9%) 
across the US (Figure  8). Moreover, the environment- specific 
tillage scheme reduced the negative impacts of EDHs across dif-
ferent historical periods (Figure 8).

The long- term sustainability of tillage practices in regions 
with significant effects, where tillage practices continuously 
reduce or enhance carbon sensitivity, has been questioned. 
Specifically, under dry- heat conditions, the negative effects of 
tillage practices deteriorated over time, whereas the positive 
effects gradually diminished for winter wheat GHGs and yield 
(Figure  S21a–c). Unlike winter wheat, the dynamic changes 
in tillage practice effects (positive and negative) over time 
did not follow a consistent trend for spring wheat GHGs and 
yields (Figure S22a–c). If tillage schemes are not adjusted for 
negatively affected regions, EDHs can further exacerbate the 
climatic costs of winter wheat food production over time. This 

FIGURE 7    |    Tillage practice effects and recommended strategies for mitigating the impact of dry- heat climates on GHG emission intensity in 
winter- spring (a) and spring wheat (b). From left to right, the three columns represent dry (DC), heat (HC), and compound dry- heat conditions 
(CDHC). The first (panels I–III) and second (panels IV–VI) rows of Figures a and b depict the spatial patterns of tillage effects and recommended 
tillage strategies. Specifically, tillage effects are expressed as the probability of reducing the negative impacts of dry- heat conditions through tillage 
practices, based on 20- year sliding windows. Tillage practices with a probability greater than 75% are recommended as effective strategies for each 
grid. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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underscores the importance of adopting region- specific tillage 
practices in specific locations to fully offset dry heat- induced 
losses.

3.7   |   Uncertainty of Sensitivity Variations From 
Different Meteorological Datasets and Methods

We introduced two independent meteorological drivers (Livneh 
and ERA5) and nonlinear methods (Kendall and Spearman 
correlations) for a comparative analysis of sensitivity variations 
(Figures S23, S24, S25, and S26). Additionally, we integrated all 
datasets and methods to generate nine sets of sensitivity results 
for uncertainty analysis (Figure  S27). We observed consistent 
spatial patterns of sensitivity across different meteorological 
datasets for both winter and spring wheat. Furthermore, a co-
herent trend was identified, showing a sharp increase in the 
dry- heat sensitivity of winter wheat GHG emissions after 2008 
and a continuous rise in spring wheat sensitivity over the past 
six decades (Figures S23, S24, S25, and S26). These results in-
dicate that the meteorological datasets employed in this study 
are sufficient to capture the spatiotemporal variability of wheat 
sensitivity. Additionally, the various methods produced highly 
consistent outcomes, with nearly identical spatial distributions 
and temporal dynamics in sensitivity. Notably, variations in 
dry- heat sensitivity across methods were independent of wheat 
type, demonstrating that the use of linear correlation as a sensi-
tivity probe did not undermine result robustness, despite minor 
uncertainty.

Using the nine datasets, we estimated the uncertainty in the 
simulated dry- heat sensitivity of spring wheat over the past 
60 years as 0.08 ± 0.02, 0.16 ± 0.01, and 0.16 ± 0.01 for aridity, 
heat, and compound conditions, respectively (Figure S27). For 
winter wheat, the uncertainties were 0.09 ± 0.03, 0.15 ± 0.03, 
and 0.13 ± 0.03. In summary, the aggregated sensitivity results 
were consistent with the magnitude and trends observed in this 
study (Figure S27).

4   |   Discussion

4.1   |   Climate and Fertilization Dominate Yield 
and GHG Variations

While previous studies have extensively investigated crop pro-
ductivity, relatively few have focused on the GHG emissions 
associated with wheat cultivation. Our study aims to bridge 
this gap through a model- data integration framework that 
combines a process- based agricultural model with multiple 
in situ measurements and nursery yield statistics. Validation 
with observational data demonstrated that this framework 
explained most of the variation in both wheat productivity 
and GHG emissions (Figure 1). Moreover, Figure S28 shows 
regional estimates of wheat productivity that closely match 
the spatial patterns and magnitudes reported in the USDA 
survey data. Wheat production hotspots were located in the 
northwestern US (e.g., Washington and Montana) and the cen-
tral Great Plains (e.g., Kansas and Oklahoma) (Figure  S28). 

FIGURE 8    |    Sensitivity variations to EDH conditions based on recommended tillage strategies. Panels (a) and (b) represent winter wheat and 
spring wheat, respectively. The standard deviation in the left panel represents the fluctuation from 1979s to 2018s. The shaded area in the right panel 
is expressed as uncertainties under different dry- heat conditions. GHG and GHGI note greenhouse gas emissions and their emission intensity, re-
spectively. DC, HC, and CDHC represent heat, dry, and compound dry- heat conditions, respectively.
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Our estimated N2O emissions from US wheat soils totaled 
0.04 Tg N year−1 from 1960 to 2018, which were comparable 
to previous studies. For example, Tesfaye et  al.  (2021) con-
ducted global estimates of wheat N2O emissions and reported 
US wheat N2O emissions of ~0.02 Tg N in 2013. Similarly, Lu 
et al. (2022) estimated wheat N2O emissions from US cropland 
soils ranging from 0.01 to 0.02 Tg N year−1.

Given that methane emissions in dryland cropping systems 
are negligible (Figure S10), our analysis focused on how cli-
mate and nitrogen fertilizer application influence variations 
in N2O and SOC. Results confirmed that anthropogenic ni-
trogen input has significant effects on wheat N2O variation 
across the US (Figure 3 and S10a,b). In the DLEM, cropland 
N2O emissions are regulated by processes such as nitrification 
and denitrification, along with environmental stresses during 
crop growth, and typically respond nonlinearly to nitrogen 
inputs. We found that nitrogen fertilizer application rates in 
the US have continued to rise over the past six decades, mak-
ing nitrogen fertilizer use the most important factor driving 
wheat N2O emissions (Figure S9a). This is supported by pre-
vious studies on the response of agricultural N2O emissions 
to nitrogen fertilizer application (Prosser et  al.  2020; Zhang 
et al. 2020).

Nitrogen fertilizer application also emerged as the primary driver 
of SOC variations, followed by climate change (Figure S10c,d). 
In the DLEM, this is primarily due to the increase in abo-
veground and belowground biomass under fertilization, which 
subsequently enhances carbon inputs to the litter and organic 
matter pools (You et al. 2024). When carbon decomposition ex-
ceeds (or falls short of) carbon accumulation over a given period, 
SOC exhibits a net decrease (or increase), respectively. In the 
Central Great Plains, climate- driven dry- heat conditions appear 
to accelerate SOC decomposition (Figure S11), making climate 
the dominant factor in these regions (Figure S10c,d). Over the 
past 60 years, climate- induced SOC loss has been observed in 
US croplands, whereas nitrogen fertilization has contributed to 
SOC accumulation (You et al. 2024).

Climate change was also a key factor influencing wheat yield 
variation, particularly for winter wheat (Figure  3c,d). This is 
because climate factors (e.g., solar radiation, temperature, and 
precipitation) affect key physiological processes such as crop 
photosynthesis, transpiration, phenological development, and 
carbon allocation, which in turn influence biomass accumu-
lation and yield formation. Additionally, we have conducted a 
sensitivity analysis to identify the most influential parameters 
affecting wheat yield formation (You et  al.  2022). The results 
revealed that the lower cardinal temperature for heat stress re-
duction in grain number, the lower optimal cardinal tempera-
ture required for photosynthesis, and the threshold of the 10- day 
running average temperature for sowing are decisive factors in-
fluencing yield formation (You et al. 2022). These findings sug-
gest that temperature- related processes have a greater impact 
on modeled wheat yield than other climate drivers. Therefore, 
significant changes in environmental temperature are likely to 
generate more pronounced yield responses. This is consistent 
with previous findings highlighting the impact of temperature 
on wheat yield. For example, Asseng et al. (2017) reported that 
rising temperatures hinder photosynthesis by altering plant 

physiology and metabolism, which accelerates wheat senescence 
and ultimately reduces yield. Trnka et al. (2014) further showed 
that wheat resistance to high temperatures declines over time, 
suggesting a higher risk of yield reduction with future warming.

4.2   |   Dry- Heat Events Cause Yield Losses and GHG 
Emissions

After experiencing EDH events, wheat production and GHG 
emissions in US wheat regions exhibited synergistic changes, 
with 81.4% of regions showing yield reductions while 79.2% 
experienced increased GHG emissions (calculated as the aver-
age affected area across spring and winter wheat, Figure S12). 
Summer dry- heat events were the dominant factor affecting 
annual carbon flux variability in these areas. Water scar-
city experiments have shown an increase in plant mortality 
under arid conditions (Phillips et  al.  2010; Moser et  al.  2014) 
and their potential effects on aboveground carbon variation 
(Bonal et  al.  2016). Decreased chlorophyll content (Mafakheri 
et al. 2010), shortened grain- filling duration (Lobell et al. 2012), 
and early flowering induced by dry- heat stress lead to the pre-
mature senescence of wheat and even crop failure. These dry- 
heat stresses usually lead to decreased carbon input to soils and 
thus prevent SOC accumulation. Dry- heat stress also stimulates 
ecosystem respiration rate and litter turnover, which directly in-
fluences CO2 and N2O emissions (Chaves et al. 2002; O'Connell 
et  al.  2018). During short- term water deficits, both plants and 
soil microbes adapt metabolically, which promotes root and mi-
crobial respiration, consequently intensifying the oxidation of 
soil organic matter and resulting in an additional release of CO2 
(Bista et al. 2017).

In parts of the US Great Plains, the sensitivity of winter wheat 
yield to EDHs has decreased over time, leading to a signifi-
cant yet subtle trend (Figure 5b). This phenomenon was pos-
sibly due to increased irrigation activities in the central Great 
Plains (Figure S29) (Wang et al. 2021). Wang et al.  (2021) re-
ported a significant yield gap between rainfed and irrigated 
farming systems, indicating the need for improved irrigation 
infrastructure in the winter wheat planting regions. Therefore, 
reducing the sensitivity of wheat yield to EDHs could bene-
fit from irrigation practices in drier areas and even help off-
set climate- induced production losses. In contrast, trends in 
spring wheat indicated that the negative impacts of EDHs on 
yield will significantly increase in most spring wheat areas 
and are expected to suffer substantial losses in an enhanced 
dry- heat climate (Figures 5 and 6). This may be explained by 
the fact that the flowering of spring wheat experiences higher 
temperature exposure than winter wheat (Zhang et al. 2022). 
As summer warming continues, this has likely contributed to 
an increasing negative sensitivity of spring wheat yield to heat 
over time (Tack et al. 2015).

4.3   |   Effects of Environment- Specific Tillage on 
Mitigating Negative Impacts of EDH Climate

This study examined environment- specific tillage practices, tai-
lored to the exposure characteristics of EDHs, to analyze their 
potential for mitigating the sensitivity of wheat GHGI to dry- heat 
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stress. The effectiveness of a given tillage practice depends on 
the interplay among EDH exposure, environmental factors, and 
local management strategies. Accordingly, we observed that the 
effects of tillage practices varied across wheat- growing regions, 
with some areas showing positive responses and others negative 
(Figure  7). Nevertheless, the positive effects of NT in mitigat-
ing GHGI sensitivity have been widely observed in both spring 
and winter wheat regions (Figure 7). These benefits may be at-
tributed to NT's capacity to improve soil water retention, stabi-
lize crop yields, and enhance microbial resilience under stress 
(Abdalla et al. 2016; Ruis et al. 2022). Our results also indicate 
that the positive effects of NT in reducing GHGI sensitivity may 
stem from its ability to reduce N2O emissions, particularly in 
spring wheat regions (Figure  S19). Nitrogen mineralization in 
NT soils tends to occur more slowly than in tilled soils, leading 
to lower concentrations of NH4

+ and NO3
−, and, consequently, 

reduced N2O emissions (Text  S3). The spatial variation in NT 
benefits is partly due to latitude- related temperature gradients. 
Previous modeling studies have shown that the benefits of NT 
in reducing N2O emissions diminish significantly with increas-
ing air temperatures, while precipitation has little effect (Huang 
et al. 2022). Soil texture is another important factor influencing 
NT benefits, with these benefits increasing as clay content rises 
(Huang et al. 2022). However, this factor may not fully explain 
the spatial variation in NT benefits between spring and winter 
wheat regions.

Our findings further revealed that CT partially mitigates the 
negative impacts of EDH conditions on GHGI in irrigated re-
gions of the Central Plains (Figure 7). This is likely due to higher 
yields under CT than NT in irrigated regions, with the effect 
particularly pronounced under EDH conditions (Figures  S11 
and S29). The yield benefit under CT may reflect its role in in-
corporating surface residues and redistributing soil organic 
matter and nutrients, thereby enhancing nutrient availability 
and supporting crop growth under EDH conditions [Text S3.1; 
(Williams et al. 2008)]. However, tillage- induced disturbances 
would also affect the soil carbon pool turnover by directly en-
hancing decomposition rates and indirectly altering nutrient 
and moisture availability (Text  S3.3; Huang et  al.  2020), po-
tentially contributing to increased CO2 emissions (Figure S20). 
Their overall effects on GHGI sensitivity thus reflect a balance 
between these opposing processes. When selecting tillage meth-
ods, it is essential to comprehensively consider various factors 
such as soil type, climatic conditions, crop types, and the re-
sources and technical expertise of farmers.

Our results indicate that optimal tillage significantly mitigated 
wheat GHGI sensitivity in less than one- third of wheat- growing 
regions (Figure  7). This limited effectiveness is likely due to 
complex interactions between tillage and local environmental 
factors, including differences in soil conditions, microbial com-
munities, tillage duration and depth, and other concurrent man-
agement practices (Groffman 1985; Venterea and Stanenas 2008; 
Van Kessel et al. 2013). Therefore, we recommend implementing 
region- specific tillage strategies to partially offset the negative 
effects of dry- heat extremes. However, achieving a trade- off be-
tween extreme dry heat shock and crop resistance cannot rely 
completely on tillage practices. Efforts to implement smart agri-
cultural practices that vary case by case are needed to minimize 
the impact of extreme weather on crop production.

4.4   |   Limitations and Perspectives

This study has several limitations and uncertainties. First, 
the forcing datasets used in the model introduced uncer-
tainties. For instance, although we reconstructed fertilizer 
and irrigation data based on county-  or state- level statistics, 
these datasets may not fully capture the spatial variability in 
the magnitude and timing of management inputs. Tillage in-
tensity data have been available at the county level over the 
past few decades, maintaining high data quality but lacking 
detailed spatial information. Therefore, the dataset inevitably 
introduced extrapolation errors for earlier years. Additionally, 
the model assumes that the percentage of crop residue re-
moval associated with different tillage practices introduces 
additional uncertainty that may vary significantly from the 
actual residue input into soils.

Second, the DLEM provides a simplified representation of 
some management practices, potentially leading to a simula-
tion bias. For example, the current model represents the crop 
response to irrigation as unaffected by water stress without 
accounting for the irrigation amount and timing. This may 
lead to biases in the simulation of soil moisture, thereby influ-
encing the prediction of GHG emissions. It is essential to ac-
knowledge that our model structure is inherently incomplete 
and uncertain, resulting in overall uncertainty in the model 
simulations. Another limitation of the current model is its 
failure to account for heat stress effects on other phenologi-
cal events, such as spikelet number. This simplification may 
lead to an underestimation of heat stress impacts on wheat 
yield, as heat stress during the reproductive stage can also 
have a significant negative effect under real- world conditions. 
Consequently, we acknowledge that the model may introduce 
uncertainty when applied to different geographic regions, cli-
matic conditions, and wheat varieties. Future studies could 
improve the model to include the impact of reproductive- stage 
heat stress on parameters such as spike number and other 
growth metrics, thereby enhancing its predictive capacity. 
To this end, the accuracy and reliability of the models should 
be enhanced through additional field validation and test-
ing using datasets from diverse regions. The Coupled Model 
Comparison Programs (CMCP) provide crucial examples for 
quantifying the uncertainty associated with model structures 
(Friedlingstein et  al.  2023; Tian et  al.  2024). Therefore, we 
also advocate initiating CMCP to decrease the uncertainty as-
sociated with the model structures.

Third, the model parameters also contribute to simulation un-
certainty. Although these parameters fall within reasonable 
ranges as derived from past experimental and simulation stud-
ies, previous studies have only provided simplified estimates of 
parameter sensitivity using prior probability sampling methods. 
However, this approach may not accurately capture true spatial 
distribution. Previous studies have shown that parameters re-
lated to crop growth and development vary with changes in the 
underlying surface environment (Huang et  al.  2019). Despite 
calibrating the model with parameters for the three major winter 
wheat varieties grown in the United States, many physiological 
and biochemical parameters remain constant. This constraint 
limits the capacity of the model to accurately simulate regional 
carbon and nitrogen cycles.
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Finally, we did not investigate the duration of dry- heat events, 
which may have failed to capture the occurrence of dry- heat 
stress and duration at specific growth stages that impact wheat 
carbon sequestration. Additionally, we did not consider con-
secutive water scarcity events (e.g., a series of water scarcity 
events that occurred in succession without significant intervals 
between them); thus, the effects of post- EDHs on crops in the 
following year were not examined. Although current models 
incorporate the mechanisms of crop carbon assimilation and 
allocation under dry- heat stress, more research on model devel-
opment is needed to incorporate the dynamics of yield and GHG 
sensitivity, and how they differ among wheat types.

Uncertainty in yield and GHG prediction will be amplified in fu-
ture warming climates owing to the rapidly increasing negative 
impacts of EDHs on crop GHGI. Therefore, our results highlight 
the urgent need to consider the differences in GHGI dependence 
on dry heat stress among crop types and their long- term dynam-
ics under multiple agricultural management strategies.
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