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ABSTRACT
Wheat production is crucial in global food security and sustainable development, 
especially in severe global climate change, frequent extreme weather events, and 
significant population growth worldwide. A deeper understanding of spatial variation 
in wheat production and its determining factors is essential for implementing different 
cultivation practices, water and fertilizer management, and adaptive variety selection 
across different regions. However, existing methods primarily focused on identifying 
single-variable factors while lacking geographical spatial characteristics, which may lead 
to an incomplete exploration of spatial disparities in wheat production, predictions, and 
responses to changes in determining factors. This study develops a geospatial machine 
learning model by integrating spatial autocorrelation, spatial stratified heterogeneity, 
and decision tree to identify spatial disparities and their determinants of wheat produc-
tion. The model is applied to wheat production analysis in Australia, the world’s 5th 
(2022) wheat-producing country. First, a spatial autocorrelation method is employed to 
identify the hotspot area of wheat production in Australia. Next, the geographically 
optimal zones-based heterogeneity (GOZH) model, an integration of spatial stratified 
heterogeneity and decision tree learning models, is used to identify determinants and 
their interactions on spatial disparities of wheat production. Finally, the developed 
geospatial machine learning model is evaluated by comparing its effectiveness with 
the commonly used geographical detector model. The results demonstrate pronounced 
spatial heterogeneity in Australian wheat production driven by environmental, climatic, 
and soil factors and their interactions. Identifying these spatial determinants enables 
more efficient crop management – such as targeted sub – regional practices, climate – 
adaptive variety selection, and soil health strategies – thereby supporting food security 
and sustainable agricultural systems.
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1. Introduction

Global crop demand is critically increasing due to the rapid expansion of the global economy and popula-
tion, leading to the urgent need to enhance crop production (Guarin et al. 2022; Langridge et al. 2022). 
Wheat is one of the most important crops in the world, providing 20% of the calories and nutrients humans 
rely on for survival (Gutierrez and Braunstein 2017). Wheat production essentially affects food security in 
regions with dense agricultural and climate-sensitive regions, leading to the increased challenges in devel-
oping climate adaptation strategies and effective regional management in crop production (Chakraborty 
et al. 2022; Dong et al. 2020; Sharps et al. 2021).

Understanding the spatial disparities of wheat production provides evidence for the decision-making and 
adaptation strategies (Hernandez-Ochoa et al. 2018). For instance, studies in South Australia and 
Mediterranean countries demonstrated that distinct weather patterns, soil variability, and climatic conditions 
can significantly impact crop attributes, production, and quality (Diacono et al. 2012). Therefore, accurate 
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factor exploration for assessing the spatial disparity of wheat production provides quantitative solutions for 
optimizing resource allocation and formulating targeted strategies to enhance regional and cooperative 
cross-regional wheat production and improve their stability and efficiency (X. Lv et al. 2023; Y. Zhang and Li  
2022).

A variety of methodologies have been developed to investigate spatial disparities in wheat production 
from different perspectives, including statistical econometric models, kriging interpolation, and machine – 
learning algorithms, which capture spatial dependencies, heterogeneity, and complex factor interactions 
(Min et al. 2014). Stratified heterogeneity models further improve upon these approaches by dividing spatial 
data into strata and examining variation within each group (P. Luo et al. 2022; Z. Zhang, Li, and Song 2024; 
Zhang et al. 2024). The geographical detector (GD) method represents a prominent stratified – heterogeneity 
technique; it partitions the study area based on explanatory variables and evaluates the resulting spatial 
variance to quantify each factor’s explanatory power (J. F. Wang et al. 2010, 2014). GD has been widely 
applied to explore spatial differences in crop production and to assess relationships between yield and 
environmental drivers (Chu et al. 2019; Hou et al. 2023; Zeng et al. 2023).

Building on GD, the optimal parameters – based geographical detector (OPGD) model optimizes dis-
cretization breakpoints and scale effects to improve the extraction of geographic features from spatial 
explanatory variables, yielding more precise spatial analyses (Song et al. 2020). OPGD has been used to 
analyze soil organic matter distribution in the Huangshui River Basin and to examine driving – factor 
interactions in vegetation net primary productivity (Liu et al. 2023; W. Zhang et al. 2023). However, these 
approaches do not fully elucidate the spatial distribution characteristics of the response variable during the 
discretization process, resulting in incomplete exploration of the relationships between explanatory and 
response variables. To address this gap, the geographically optimal zones – based heterogeneity (GOZH) 
model identifies regions that maximize inter – region differences and minimize intra – region variation, 
thereby enhancing the reliability of interaction estimates among multiple explanatory variables (P. Luo et al.  
2022).

Factors affecting the spatial disparity of wheat production can be classified into four categories. First, 
climate is an essential factor, as changes in local climate impact wheat production per hectare, alter the 
distribution of climatically suitable areas for wheat growth, and affect the availability of land suitable for 
wheat cultivation, leading to regional variations in wheat production potential and trends (Fan et al. 2018; 
B. Wang et al. 2018). Second, geographical factor significantly shapes wheat production’s spatial disparities 
by interacting with climate, location, and soil, impacting production patterns and agricultural sustainability. 
Third, soil attributes influence spatial disparities in wheat production due to their impact on factors such as 
soil quality, moisture distribution, and nutrient availability, which affect crop production in various regions 
and environmental change scenarios (Ajami et al. 2020; Chu et al. 2019; Q. Luo et al. 2005). Finally, 
environmental factors play a pivotal role in influencing the variation in wheat production across different 
areas. Remote sensing and geospatial technologies are effective approaches to monitor and analyze 
production environments, climate patterns, and biotic stress variations and identify complex relationships 
between environment and wheat production (Hodson and White 2007; Sbahi, Ziboon, and Hassoon 2018). In 
addition to the individual impacts of variables on wheat production, it is essential to explore complex 
interactions among these variables (Ajami et al. 2020; Chu et al. 2019; Jiu-Jiang et al. 2022). Furthermore, the 
spatial disparities in wheat production are also influenced by spatial scales, including the field scale (Mao 
et al. 2021; Kravchenko, catchment scale (Mao et al. 2021; Richter et al. 1998), regional scale (Jin et al. 2022; 
Z. Lv et al. 2017; Xiong et al. 2008), administrative scale (Fu et al. 2021), and global scale (He et al. 2022). 
Remote sensing and geospatial technologies are effective for monitoring and analyzing production envir-
onments, climate patterns, and biotic stress variations, which helps identify complex relationships between 
the environment and wheat production (Hodson and White 2007; Sbahi, Ziboon, and Hassoon 2018). 
Integrating remote sensing and geospatial technologies facilitates a comprehensive understanding of the 
impacts of environmental factors on wheat production. This approach not only enhances the ability to 
monitor and analyze spatial disparities but also informs better agricultural practices and policy-making.

However, there are still several challenges to examining the spatial disparities of wheat production using 
geographical technologies. Given the vast expanse of Australia and the spatial distribution of factors, such as 
climate, soil, and environmental conditions, wheat production exhibits significant spatial disparities (Fletcher 
et al. 2020; Orton et al. 2018). To address these complexities, we employed the GOZH model, which is well 
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suited for correcting single-variable underestimation, mitigating multi-variable overestimation, and delineat-
ing fine-scale regional patterns (Hu, Song, and Zhang 2025; P. Luo et al. 2022), thereby enabling a more 
accurate identification of the key factors driving wheat production and their spatially heterogeneous 
impacts.

This study aims to explore the spatial disparities and identify the determinants of wheat production 
through the development of a geospatial machine learning model that incorporates spatial autocorrela-
tion, spatial stratified heterogeneity, and decision tree analysis. Given Australia’s extensive territory and 
diverse climate, coupled with its position as the 5th largest wheat producer globally in 2022 and the 2nd 
largest wheat exporter (FAO 2024), it serves as an ideal region for examining the spatial heterogeneity of 
wheat production. Wheat production data from Local Government Areas (LGAs) across Australia for the 
years 2016 and 2021 were collected as a research dataset, sourced from official Australian government 
websites. Data on 20 critical factors influencing wheat production over the past year were collected, 
including four distinct categories: geography, climate, soil, and environment. First, the study employs 
spatial autocorrelation methods to explore the spatial clustering and hotspot distribution characteristics 
of wheat production. Second, the GOZH model is utilized to identify geographically optimal regions for 
wheat production and analyze their spatial variations. Third, the effects of univariate and multivariate 
interactions on wheat production are examined to identify determinants. Finally, the efficacy of the 
model developed in this study is validated by comparing it with another geospatial heterogeneity model 
named OPGD.

The paper is organized as follows: Section 2 introduces the study area, wheat production data and 
explanatory variables used in this study. Section 3 presents the theory, methods, and formulas of the 
GOZH model. Section 4 presents the results, including the spatial autocorrelation analysis of wheat produc-
tion, the delineation of geographically optimal zones, the identification of primary determinants of spatial 
disparities, the effects of individual and multiple variables, and a comparison with another spatial stratified 
heterogeneity model. Section 5 and 6 present the discussion and conclusions of this study.

2. Study area and data

2.1. Study area and wheat production

Wheat is the most important cereal crop produced in Australia, accounting for approximately 3.5% of global 
annual wheat production, with an average national output of around 25 million tonnes (Australian Export 
Grains Innovation Centre 2022; Kingwell 2020). Australia’s wheat is mainly exported, accounting for 65–75% 
of the national wheat production, exported to more than 50 countries around the world, of which Western 
Australia (WA) is the largest wheat exporting state (Australian Export Grains Innovation Centre 2022; Kingwell  
2020). Since Australia has a large proportion of wheat production and exports, we will conduct research on 
spatial disparities in Australian wheat production.

In this study, the wheat production data were retrieved from the Australian Bureau of Statistics (ABS) for 
2015 to 2016 and 2020 to 2021 (Australian Bureau of Statistics 2017, 2022). In 2021, Australia’s total national 
wheat production was 31.9 Mt. Among them, New South Wales (NSW) had the most wheat production, 
accounting for 44.06% of the total. The spatial distribution of wheat production is shown in Figure 1, which 
shows the total and average wheat production within the Australian wheatbelt in 2016 and 2021, respec-
tively. Figure 1 shows that total wheat production in Australia is predominantly concentrated in the central 
and eastern regions, the southeastern coastal areas, as well as in the western and southwestern regions. Total 
wheat production is relatively higher in the southeastern part of Queensland (QLD), central NSW, western 
Victoria (VIC), eastern South Australia (SA), and southeastern WA.

To ensure a more accurate spatial representation of wheat production, we constructed a refined spatial 
unit by overlaying the Local Government Areas (LGAs) with the wheatbelt boundaries, as defined by the ABS. 
This modified LGA approach eliminates the bias introduced by including large non-producing areas, thereby 
improving spatial accuracy (Feng et al. 2022). Based on this method, 186 LGAs were identified within the 
wheatbelt in 2016, while in 2021, the number slightly decreased to 179 (Australian Bureau of Statistics 2020,  
2021).
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Due to differences in climate conditions and policies, major Australian states have different wheat 
planting, farming, and growth and development periods. Table 1 shows the wheat growing seasons in 
various Australian states. This study accounts for the wheat growing season by using data corresponding to 
the appropriate time periods across LGAs in different states. To minimize the influence of regional size on the 
outcomes of geospatial analysis, the average wheat production per LGA is used in the analysis.

2.2. Explanatory variables

We selected 20 explanatory variables in four categories – geographic, climatic, soil, and environmen-
tal – to capture the main drivers of wheat – yield heterogeneity in Australia (Table 2). Variables were 
selected based on three criteria: empirical relevance in temperate cropping systems (Han et al. 2020; 
Millar et al. 2018), representation of key growth processes (temperature, precipitation, soil moisture 
and texture, vegetation vigor, and water use), and data completeness at the LGA level using 

Figure 1. Distribution of Australian total wheat production and mean wheat production in 2016 and 2021.

Table 1. The wheat growing seasons in various states of Australia.
State Wheat growing sesaons

NSW From April to December (Gomez-Macpherson and Richards 1995; Pang, Chang, and Chen 2022; B. Wang et al. 2015).
VIC From April to January of the following year (Pang, Chang, and Chen 2022; E. Wang et al. 2009).
QLD From March to November (Cammarano et al. 2012; Obanor et al. 2013).
SA From April to December (Pang, Chang, and Chen 2022; E. Wang et al. 2009).
WA From May to January of the following year (Duncan et al. 2017; Shen and Evans 2021).
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harmonized products from Google Earth Engine (MODIS EVI and NDVI) and institutional archives 
(ECMWF reanalysis, national soil surveys). Although climate modes such as El Niño – Southern 
Oscillation and the Indian Ocean Dipole affect Australia’s rainfall and temperature, their local impacts 
are captured by our precipitation, temperature, soil moisture, and vegetation indices, so we did not 
include them as separate variables. Figure 2 shows the spatial distributions of these variables and their 
relation to regional yield patterns.

2.2.1. Geographical variables
Terrain will directly affect various factors such as sunlight, solar radiation, temperature, precipitation, and air 
pressure that crops receive (Ajami et al. 2020; Kitchen et al. 2003). The most intuitive model to describe 
terrain is the digital elevation model (DEM), which is elevation data as our geographical variable. The DEM 
dataset of Australia was collected from the GEE data catalog provided by Geoscience Australia (Geoscience 
Australia 2015), which was derived from the SRTM data acquired by the National Aeronautics and Space 
Administration (NASA) in February 2000. This dataset has been smoothed to reduce noise and improve the 
representation of surface shape, and it has a high resolution of 30 m. Then, the terrain data include slope and 
aspect data calculated based on DEM.

2.2.2. Climate variables
Temperature and precipitation are extremely important climate-influencing factors for the spatial disparity of 
wheat production (Song et al. 2019; H. Zhang et al. 2022). Therefore, we use the air temperature (AT), total 
precipitation (TP), surface pressure (SP), and wind speed (WS) as climate variables, which are collected from 
the ECMWF Reanalysis v5 (ERA5) dataset produced by Copernicus Climate Change Service (C3S), the fifth 
generation ECMWF reanalysis for the global climate and weather for the past eight decades (Hersbach et al.  
2023). The resolution of the climatic variables dataset is 0.25°.

2.2.3. Soil attributes
Soil attributes influence crop growth and development by affecting nutrient availability, water retention 
capacity, soil texture, and pH levels (Kitchen et al. 2003; Nabiollahi et al. 2020; Miller, Singer, and Nielsen  
1988). The Soil and Landscape Grid of Australia (SLGA) is a comprehensive dataset of soil attributes across 
Australia at 3 arc-second resolution (,90 m pixels) which can be obtained from GEE (Rossel et al. 2015). This 
study uses nine variables of soil attributes from this dataset as follows: Available water capacity (AWC), Bulk 
density (BDW), Clay (CLY), Total nitrogen (NTO), Total phosphorus (PTO), Silt (SLT), Sand (SND), Soil organic 
carbon (SOC) and pH (CaCl2) (pHc). These variables have six depths representing the relative soil attributes, 
such as 0–15 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm. The resolution of soil attributes 
variables is 92.77 m.

Table 2. A summary of explanatory variables that potentially affect spatial disparities of wheat production.
Category Variable Code Product Resolution

Geography Elevation EL DEM-S 30 m
Slope SLP DEM-S 30 m
Aspect ASP DEM-S 30 m

Climate Air temperature AT ERA5_land 0:25�

Total precipitation TP ERA5_land 0:25�

Surface pressure SP ERA5_land 0:25�

Wind speed WS ERA5_land 0:25�

Soil data Available water capacity AWC CSIRO/SLGA 92.77 m
Bulk density (Whole earth) BDW CSIRO/SLGA 92.77 m
Clay CLY CSIRO/SLGA 92.77 m
Total Nitrogen NTO CSIRO/SLGA 92.77 m
Total Phosphorus PTO CSIRO/SLGA 92.77 m
Silt SLT CSIRO/SLGA 92.77 m
Sand SND CSIRO/SLGA 92.77 m
Soil organic carbon SOC CSIRO/SLGA 92.77 m
pH (CaCl2) pHc CSIRO/SLGA 92.77 m

Environment Evapotranspiration ETa CMRSET Landsat V2.2 30 m
Net primary production NPP MOD17A3HGF V6.1 500 m
Normalized difference vegetation index NDVI MOD13A2 V6.1 1000 m
Enhanced vegetation index EVI MOD13A2 V6.1 1000 m
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2.2.4. Environmental variables
Environmental and ecological conditions of LGAs were characterized using evapotranspiration (ETa), 
net primary production (NPP), normalized difference vegetation index (NDVI), and enhanced vegeta-
tion index (EVI) data (Qader, Dash, and Atkinson 2018; Y. Wang et al. 2019; Xu et al. 2019). The ETa 
data were collected from GEE provided by the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) Land and Water with a 30 m resolution (Guerschman et al. 2022). Similarly, data 
for NPP, NDVI, and EVI were also obtained from GEE, ensuring consistency in the data quality (Didan  
2021; Running and Zhao 2021). These datasets were instrumental in assessing the environmental 
and vegetative health of the regions, providing key indicators for the study.

Figure 2. Spatial distributions of explanatory variables in 2021. (a) - (c) geographical variable, (d) - (g) climate variables, (h) - 
(p) soil attributes, (q) - (t) environmental variables.
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3. Methods

This study develops a geospatial machine learning model for analyzing spatial disparities and 
identifying the determinants in Australian wheat production. The geospatial machine learning 
model includes spatial autocorrelation, spatial stratified heterogeneity, and decision tree analysis. 
Figure 3 illustrates the workflow of this study, which includes six main steps. First, the collected 
variable data undergoes preprocessing to align with the input requirements of the model within this 
study. Second, a spatial autocorrelation analysis of the response variable will be performed, examin-
ing information such as hotspot distribution and clustering patterns. Third, the contribution of 
individual explanatory variables to wheat production will be determined. The fourth step involves 
the identification of geographically optimal regions for wheat production in Australia, followed by 
grouping optimal regions. The fifth step is to identify the interaction impacts among explanatory 
variables and compute the model’s power of determinants (PD) values for hotspot regions and 
individual states. Finally, the developed model is validated by comparing it with another geographic 
detector model.

3.1. Data pre-processing

In the first stage, it is essential to subject the collected raw data to data pre-processing to meet the 
requirements of our research. The data pre-processing comprises four primary components. First, 
a consistent spatial unit is maintained for all explanatory variables. Second, data standardization is per-
formed. Mean values for each LGA region are computed, and the temperature data undergo unit conversion 
from Kelvin to Celsius. Third, an outlier detection process is implemented. The BDW and SOC soil attributes 
exhibit pixel values that surpass the surrounding values. A threshold is set at 2.5 standard deviations from the 
mean to identify outliers, and values exceeding this threshold are removed. Finally, given that there are six 
soil attribute datasets corresponding to six geological layers, principal component analysis (PCA) is 
employed to extract the most significant components and reduce the dimensionality of the soil attribute 
data. This approach facilitates the condensation of the data into a more analyzable form while preserving the 
most pertinent information. Table 3 illustrates the pre-processing operations conducted on the explanatory 
variable data. Moreover, the GOZH model employed in this study has checked the input variables during the 
calculation process, so no collinearity adjustments are required in the data pre-processing phase.

3.2. Spatial pattern analysis

This study employed spatial autocorrelation methods, including Moran’s I and local indicators of spatial 
association (LISA), to identify global and local clusters and significance levels of wheat production.

Moran’s I is a spatial autocorrelation measure in geostatistics, utilized to quantify the spatial clustering, 
dispersion tendencies, and significance of spatial data within the study area (Li, Calder, and Cressie 2007; 
Moran 1950). Moran’s I value ranges from −1 to 1, where a value greater than 0 indicates a positive spatial 
correlation, less than 0 indicates a negative spatial correlation and a value of 0 signifies a random spatial 
distribution without correlation. The calculation formula for Moran’s I is as follows: 

where n is the number of factors, xi and xj represent the attribute values of the i-th and j-th factors, �x is the 
mean value of attribute values, and wij denotes the spatial weight between the i-th and j-th factors.

LISA is used to analyze the clustering and associational relationships of spatial data at the local level, it is 
necessary to introduce the local Moran’s I, known as LISA (Anselin 1995). This method assesses the spatial 
clustering or dispersion phenomena of individual features by calculating the ratio of the covariance to the 
variance between each spatial element and its neighboring elements (Anselin 2005). The computational 
formula is as follows: 
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Figure 3. Schematic overview of identifying the spatial disparities and determinants of wheat production in Australia based 
on the geospatial machine learning model.
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where Ii is the value of local Moran’s I, xi and xj represent the attribute values of the i-th and j-th factors, 
�x is the mean value of attribute values. The wij is the spatial weight matrix, and s2 is the variance of 
variable x.

In this study, the distance weight method selected is the Gaussian Kernel function, wherein diagonal 
weights are set to 1.

3.3. Contributions of individual variables

The geographical detector (GD) model consists of four main components: factor detection, interaction 
detection, risk detection, and ecological detection (Jinfeng and X 2017). The factor detection is a core 
component of the GD model, and it allows for the comparison of the relative importance of various 
explanatory variables within the study area by assessing the magnitude of their power of determinants 
(PD) values. The calculation formula for PD is as follows (J. F. Wang et al. 2010): 

where SSW and SST represent the sum of squares within the region strata and the total sum of squares 
determined by the explanatory variables, respectively. Nz and σz represent the count and standard deviation 
within geographical zone z (z = 1, . . ., h), respectively. Similarly, N and σ denote the count and standard 
deviation throughout the entire study area. The value of PD, which falls within the range [0,1], indicates the 
explanatory power of the variables on the response variable, with a higher PD value signifying a stronger 
explanatory power of the explanatory variables concerning the response variable and, consequently, 
a higher degree of association between them.

The geographically optimal zones – based heterogeneity (GOZH) model is designed to delineate regions 
that maximize inter-zone dissimilarity while maintaining intra-zone similarity (P. Luo et al. 2022). It achieves 
this through a decision-tree-driven, optimized spatial stratification that simultaneously captures the inter-
actions among multiple explanatory variables. Unlike classical GD, which depends on user-defined discreti-
zation, or OPGD, which carries out an exhaustive grid search for PD-maximizing cut-points, GOZH integrates 
the tree algorithm with an iterative search for the optimal power of determinants (Ω). At each split, the 
procedure maximizes between-zone variance, tracks the marginal gain in Ω, and terminates when the 
incremental improvement falls below 1% (P. Luo et al. 2022; Song et al. 2020). GOZH preserves GD’s 
interpretability while automating zone delineation and safeguarding against both under- and over- 
segmentation.

In addition, GOZH enhances the reliability of estimating interactions among multiple explanatory vari-
ables in the study of spatial determinants. In this study, the GOZH model defines the PD value to explain the 
relationship of explanatory variables and geographical zones and also defines an optimal power of determi-
nants (OPD) value to indicate the maximum explanatory power of variables on the geographically optimal 
zones (P. Luo et al. 2022): 

Table 3. Methods and procedures for pre-processing explanatory variables.
Pre-processing Variable

Compute LGA mean DEM, SLP, ASP
Compute annual LGA mean NPP
Compute growing-season mean per LGA and convert to �C AT
Outlier removal and PCA, then compute LGA mean BDW, SOC
PCA applied, then compute LGA mean AWC, CLY, NTO, PTO, SLT, SND, pHc
Compute growing-season mean per LGA TP, WS, ETa, NDVI, EVI
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where X is one or multiple explanatory variables, and D represents the stratified variable describing 
geographical regions, and SSWX;D is the sum of squares within geographical regions defined by D which 
are determined based on explanatory variable X . The Ω value signifies the OPD of explanatory variables and 
is the maximum value of PD.

The GOZH model quantifies the spatial heterogeneity contribution of each explanatory variable to wheat 
production. To prevent excessive regional partitioning and ensure a rational delineation of optimal geo-
graphic areas, decision trees were constructed for LGAs with a minimum observation size of 10 per node, 
denoted as minsplit = 10 (Breiman 2017). In the stepwise spatial discretization process, groups with fewer 
than 10 LGAs were not further discretized. The PD for each individual variable within each category was 
computed throughout the spatial discretization, which is the Ω value and elucidates the influence and 
contribution of each variable toward the spatial distribution of wheat production.

3.4. Identifying the geographically optimal zones

Optimal geographical zones require minimal within-area variance and maximum between-area variance. The 
minimum value of SSWX;D is calculated as follows for deriving Ω. 

where yzj and �cz represent the j-th (j = 1, 2, . . ., Nz) observed value and the mean value of wheat production in 
zone z, respectively. To solve the above equation, it is necessary to discretize the spatial wheat production 
with explanatory variables step by step, selecting the optimal discrete breakpoints and cutoff variables. The 
detailed derivation of Ω is presented in the paper published by Peng Luo (P. Luo et al. 2022). This spatial 
discretization process is similar to the classification and regression tree (CART) algorithm (Breiman 2017). The 
GOZH model mainly uses the R software packages “rpart” (Therneau and Atkinson 2023) and “GD” (Song 
et al. 2020).

This study employed the GOZH model to discretize LGAs with wheat production into a binary tree 
structure using 20 explanatory variables. Throughout the iterative discretization process, the LGAs were 
segmented into several geographically optimal zones. Within these zones, regions of the same type 
displayed significant homogeneity, whereas regions of differing types exhibited pronounced heterogeneity.

3.5. Identifying impacts of variable interactions

The identification of geographically optimal zones using the geographically optimal zones-based hetero-
geneity (GOZH) model is accomplished through stepwise spatial discretization and the interactions among 
multiple variables. In this study, the GOZH model examines determinants of spatial disparities in wheat 
production from four categories of input explanatory variables. This examination considers how these factors 
influence the spatial disparities of wheat production and their relationships with each other. Through 
comparing the contribution of these factors to delineating geographically optimal zones, a systematic 
analysis is conducted to determine which group of factors primarily influences these spatial disparities.

Following that, the GOZH model is applied at multiple spatial scales using consistent input and output 
variables, encompassing the entire Australian continent, hotspot and non-hotspot regions, as well as 
individual states. The resulting Ω values generated for each region are compared to evaluate the model’s 
robustness and effectiveness across different geographic contexts, thereby providing insights into the scale- 
dependent performance of the GOZH model.

3.6. Model evaluation

The developed geospatial machine learning model is evaluated through another geospatial heterogeneity 
model, optimal parameters-based geographically detectors (OPGD). OPGD model has been developed 
building upon the foundation of the GD model (Song et al. 2020). This model optimizes the processes of 
spatial data discretization and spatial scaling, determining the best parameter combination for the 
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Geographic Detector model. This optimization assists in extracting essential geographic features embedded 
within spatial explanatory variables.

The effectiveness and reliability of the GOZH model in analyzing spatial heterogeneity of wheat produc-
tion will be validated by comparing the results of the OPGD model, which was executed in the “GD” package 
in the R language. The GOZH model’s applicability and superiority in analyzing spatial disparities in wheat 
production were assessed by comparing the PD values of explanatory variables and their variations in 
individual PD values between the two models. This was further complemented by examining the trends in 
PD values differences of the four principal variables across different strata within each model.

4. Results

4.1. Data pre-processing

After a series of operations including spatial unit consistency processing, data standardization, outlier 
processing, and principal component analysis, the wheat production and explanatory variable data meet 
the model input requirements. Table 3 shows the pre-processing operations for each explanatory variable. As 
a result, we obtained 186 data sets in 2016 and 179 sets in 2021.

4.2. Spatial pattern analysis

Figure 4 illustrates the spatial distribution patterns of average wheat production in Australia for 2 years. From 
Figure 4(a,d), the Moran’s I values for wheat production in 2016 and 2021 are 0.532 and 0.669, respectively, 
indicating a significant spatial clustering of wheat production in Australia. Figure 4(b,e) identify the hotspots 
(high-production areas) and cold spots (low-production areas) for wheat production, providing a clearer 
understanding of the clustering characteristics. In 2016, there were 41 hotspot regions, mainly distributed in 
south-central New South Wales (NSW), southern South Australia (SA), and the mid-western and southern 
regions of Western Australia (WA), accounting for 22% of the LGAs in the study area. In 2021, the number of 
hotspot regions increased to 44, primarily concentrated in NSW and Victoria (VIC), representing 24.6% of the 

Figure 4. Results of Moran’s I and LISA analysis. Value of Moran’s I in 2016 (a) and 2021 (d), hotspot analysis based on LISA in 
2016 (b) and 2021 (e), significance analysis based on LISA in 2016 (c) and 2021 (f).
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study area. The changes in clustering areas over the 2 years may be related to variations in climate and 
environmental conditions, such as changes in rainfall, temperature fluctuations, and the El Niño-Southern 
Oscillation.

Figure 4(c,f) display the significance levels of different regions (e.g. p < 0.001, p < 0.01, p < 0.05) for both 
years, showing significant results in both hotspot and cold spot regions. This indicates that the clustering of 
wheat production in hotspot areas is not random, and the spatial autocorrelation is statistically significant. 
The cold spot regions in both 2016 and 2021 also show strong significance, suggesting that the low 
production in these areas is not due to random variation but is caused by persistent, significant factors 
such as poor soil quality and unfavorable climatic conditions.

Figure 5 presents the statistical characteristics of wheat production in hotspots, cold spots, and other 
regions within the study area. The boxplots for hotspots indicate a relatively high median wheat production, 
with values of 1.05 t � ha� 1 and 1.72 t � ha� 1 for 2016 and 2021, respectively, demonstrating that wheat 
production in hotspot regions consistently outperforms that in other areas. The median wheat production in 
2021 is 63.8% higher than in 2016. The interquartile range (IQR) for hotspots in 2016 is narrower compared to 
2021, suggesting less variability in wheat production in 2016. In addition, some outliers in 2016 indicate 
exceptionally high production in certain LGAs. In contrast, the median of cold spots is significantly lower, 
reflecting the generally lower production in these areas. Other areas are between hot and cold spots, with 
moderate IQR, indicating that the wheat production changes in these areas are more balanced and the 
production level is more stable.

Table 4 provides statistical details on the number of LGAs, total average production, and average 
production characteristics across hotspots, cold spots, and other regions. From Table 4, NSW had 
a majority of hotspots in 2021, totaling 30, which accounted for 68.2% of the total hotspot regions. The 
average production in these NSW hotspots was 1.62 t � ha� 1, significantly higher than the 1.18 t � ha� 1 

recorded in the NSW hotspots in 2016. Additionally, the proportion of cold spots in WA increased to 50% in 
2021, likely due to the region’s drought conditions. Furthermore, the proportion of cold spots in WA 
increased from 25.5% in 2016 to 50% in 2021, which is likely due to drought conditions in this region. The 
number of hotspot regions in VIC increased from 1 to 14, with the proportion rising from 2.4% to 31.8%. 
Meanwhile, the number of cold spot regions decreased from 12 to 1, indicating a significant upward trend in 
wheat production in VIC.

In summary, wheat production within the Australian wheat belt exhibits significant spatial clustering and 
autocorrelation patterns, reflecting the uneven distribution of favorable agroecological conditions across 

Figure 5. Mean wheat production of hotspot and non-hotspot areas based on the results of LISA analysis.
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regions. The spatial pattern analysis using Moran’s I and LISA not only reveals these regional disparities but 
also provides empirical justification for applying the GOZH model. By quantifying spatial autocorrelation, 
these methods help verify the existence of stratified heterogeneity, which is a prerequisite for the GOZH 
framework. Therefore, spatial pattern analysis serves as a foundation for the subsequent identification of 
geographically optimal zones and the assessment of explanatory variable contributions.

4.3. Contributions of individual variables

This study applied the geographically optimal zones-based heterogeneity (GOZH) model to simulate average 
wheat production data and explanatory variables affecting wheat growth in Australia’s wheat belt. The goal 
was to determine the spatial distribution differences in wheat production and identify the decisive factors.

Figure 6 illustrates the contribution of individual variables to the heterogeneity of wheat production in 
2016 and 2021 using the GOZH model. Despite the differences in the contributions of each determinant to 
the spatial pattern of wheat production, they all have significant impacts. The determining variables are 

Table 4. Local Indicators of spatial association (LISA) clustering statistics for wheat production across different states in 
Australia.

LISA Statistics NSW VIC WA SA QLD Australia

2016 High-high Count 13 1 18 9 – 41
Psum1 15.37 1.07 19.43 9.15 – 45.03
Pmean2 1.18 1.07 1.08 1.02 – 1.08

Low-low Count 4 12 12 8 11 47
Psum 2.29 3.56 5.01 3.58 3.56 18.01
Pmean 0.57 0.30 0.42 0.45 0.32 0.38

Others Count 30 13 35 19 1 98
Psum 19.47 9.52 27.31 15.12 0.69 72.11
Pmean 0.65 0.73 0.78 0.80 0.69 0.74

2021 High-high Count 30 14 – – – 44
Psum 48.68 25.01 – – – 73.69
Pmean 1.62 1.79 – – – 1.67

Low-low Count 2 1 20 6 11 40
Psum 0.85 0.68 9.95 3.11 3.94 18.53
Pmean 0.42 0.68 0.50 0.52 0.36 0.46

Others Count 15 11 38 30 1 95
Psum 14.34 9.84 36.35 26.36 1.11 88.00
Pmean 0.96 0.89 0.96 0.88 1.11 0.93

aSum of the mean production (t � ha� 1). 
bAverage of the mean production (t � ha� 1).

Figure 6. Results of the geographical optimal zones-based heterogeneity (GOZH) model for assessing power of determi-
nants (PD) of wheat production.
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categorized into four main types: geographical factors, climatic variables, soil attributes, and environmental 
conditions.

In 2016, soil attributes contributed the most, with nine soil attribute variables significantly affecting the 
distribution of wheat production. Among them, AWC (29.9%) and NTO (25.3%) had the highest contribu-
tions, closely related to the soil moisture and nutrient absorption required for wheat growth. The impact of 
topographical factors was also notable, especially ASP (23.3%), which influences light exposure, radiation, 
and water runoff, directly affecting wheat growth. Climatic variables are fundamental determinants of wheat 
production, with WS (20.6%), SP (20.4%), TP (19.4%), and AT (12.8%) collectively influencing pollination 
probability, photosynthetic efficiency, transpiration rate, and water absorption rate. Additionally, environ-
mental variables related to wheat growth showed strong influence, particularly NPP (16.7%), ETa (16.3%), 
NDVI (15.5%), and EVI (14%). These vegetation-related variables are crucial for wheat production, as a better 
vegetative environment enhances photosynthesis and yield.

In 2021, there were notable differences from 2016. While the main influencing variables remained 
consistent, the top contributing variables were EVI (45.6%), TP (45.4%), and SLT (41.3%), each contributing 
over 40%, which indicates that these three variables significantly influenced the spatial distribution of wheat 
production in 2021. Soil attributes continued to show strong influence due to Australia’s vast expanse, with 
most arable land located near coastal areas or hilly regions. Soil attributes significantly affect soil structure, 
water retention capacity, nutrient content, organic matter, and pH levels. Climatic variables also had 
substantial contributions in 2021, with TP (45.4%), AT (37.5%), WS (33.4%), and SP (19.8%) being the most 
impactful. The significant influence of TP and AT aligns with the general understanding of wheat’s sensitivity 
to precipitation and temperature. Environmental variables, especially EVI, further underscored the impor-
tance of vegetation cover for wheat growth in 2021.

Figure 7 describes the changes in major determining factors between 2016 and 2021. Figure 7(a) shows 
a notable increase in EVI in Queensland (QLD), NSW, and VIC, a slight increase in the southwest of WA, and 
varying degrees of decrease in other areas. Figure 7(b) indicates a significant increase in total precipitation 
from 2016 to 2021 in NSW, VIC, and SA, with the largest increase being 37.27 mm, while WA and QLD 
experienced significant decreases. Figure 7(c) reveals an increase in temperature in QLD and western WA, 
with a maximum increase of 0.377 �C, while other areas saw a decrease of less than 1 �C. Figure 7(d,e) show 
these three variables’ overall rate of change and coefficient of variation. The temperature had the highest 
rate of change and coefficient of variation at 9.13% and 6.17%, respectively, indicating a significant overall 
temperature increase in 2021 compared to 2016. EVI also showed a slight increase, suggesting an improve-
ment in vegetation cover across Australia. Conversely, total precipitation decreased by 2.37% in 2021, with 
a coefficient of variation of 1.69%, indicating that even minor changes can significantly impact wheat 
growth.

4.4. Identifying the geographically optimal zones

The GOZH model, utilizing decision trees and stratified analysis, classified the study area into four groups. 
Although the classification variables for 2016 and 2021 differed, the grouped regions showed only slight 
differences. This method maximizes inter-group differences while minimizing intra-group regional disparities 
in wheat production.

Figure 8 illustrates the process of dividing the wheat production regions in 2016 and 2021 into four major 
groups using decision trees and stratified analysis methods. In 2016, the key variable was NTO, which is 
critical for nutrient absorption during the wheat growth process and directly affects wheat production. The 
secondary division was made using ASP and BDW. Figure 8(b) depicts the four geographically optimal 
groups using four different colors. The characteristics of Groups 1 to 4 are as follows: high total nitrogen and 
low aspect, high total nitrogen and high aspect, low total nitrogen and high bulk density, and low total 
nitrogen and low bulk density.

In 2021, the primary variable for defining optimal regions was EVI, followed by ASP and SLT 
(Figure 8(d,e)). Through two levels of stratification, these three variables divided the wheat produc-
tion area into four major groups. Further detailed stratification was performed under other variables, 
ensuring significant geographical spatial differences between the four major groups while reducing 
significant differences within the LGA of each group. The characteristics of the four groups in 2021 
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are low EVI and low aspect, low EVI and high aspect, high EVI and low silt, and high EVI and high 
silt.

According to the box plots in Figure 8(c,f), it is evident that the three main variables for both years 
delineate the production regions based on different geographical spatial features. Identifying geographically 
optimal regions helps us better understand the spatial heterogeneity of wheat production under the 
influence of external determinants. This can assist decision-makers or farmers in managing wheat in different 
geographical regions adaptively to maximize yield and income.

Figure 9 and Table 5 depict the contribution percentages of each variable in defining the optimal 
geographical regions for wheat production. The figures illustrate that geography, soil, environment, and 
climate all influence wheat production distribution. In 2016, the primary factors affecting wheat produc-
tion were geographical and soil conditions, suggesting minimal variability in climate and environmental 
conditions that year, resulting in a lesser impact than other variables. In contrast, in 2021, soil and 
environmental factors predominantly influenced the optimal regions for wheat production. This indicates 
that the impact of different factors on wheat production changes over time. This shift may be related to 
climate change, advancements in agricultural technology, and the implementation of environmental 
policies. For example, in 2021, enhanced soil improvement measures and stronger environmental 
protection policies significantly affected wheat production. In addition, fluctuations in climate variables 
such as precipitation and temperature could affect wheat production to varying degrees across different 
years.

Figure 7. Changes in the top three determinants affecting spatial disparities in wheat production from 2016 to 2021, as well 
as their change rates and coefficients of variation.
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Table 5 details the contribution proportions of explanatory variables in defining the optimal geographical 
regions. In 2016, ASP, NTO, and AWC had higher contributions, at 42.29%, 24.51%, and 11.07%, respectively, 
indicating that terrain and soil attributes significantly influenced wheat production spatial disparities. In 
2021, EVI and ASP had the largest contributions at 37.25% and 30.07%, followed by TP and NDVI. This 
suggests that vegetation status, terrain, and precipitation substantially influenced the spatial distribution of 
wheat production in 2021. ASP played a crucial role in both years, indirectly affecting light exposure, 
radiation, temperature, precipitation, and wind speed, thereby impacting photosynthesis, pollination, and 
nutrient absorption in wheat. These findings provide a foundational framework for understanding the spatial 
disparities of wheat production in Australia, aiding in the optimization of agricultural management and 
decision-making.

4.5. Identifying impacts of variable interactions

The model developed in this study examines the spatial disparities of wheat production across Australia and 
runs separately for different hotspot and non-hotspot areas and states. Figure 10 illustrates the model results 
at various spatial scales within Australia, with the Ω value representing the total impact of the interactions 
among geographic, climatic, soil, and environmental factors on the spatial distribution of wheat production. 
In 2016 and 2021, Ω values of the GOZH were 0.707 and 0.834, respectively, indicating that the combination 
of interacting determinants explained 70.7% and 83.4% of the wheat production patterns. For hotspot areas 

Figure 8. Decision tree of identifying optimal zones (a, d), geographically optimal zones of wheat production at the LGAs 
identified using the GOZH model (b, e), and statistical summaries of explanatory variables within zones for explaining 
characteristics of zones (c, f).
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and state results, the combined Ω values were all greater than 0.5. Notably, VIC and WA in 2021 exhibited 
high Ω values, indicating that the interactions of determining factors substantially impacted wheat produc-
tion distribution in these regions. Conversely, the non-hotspot areas in 2016 showed a lower Ω value of only 
0.508, which is related to the more dispersed spatial distribution of wheat production in this region.

These findings significantly contribute to understanding the spatial disparities of wheat production in 
Australia and the complex interactions among different determining factors. The results indicate that the 
interactions of multiple variables in geographic space significantly influence the spatial patterns and 
variability of wheat production across Australia.

4.6. Model evaluation and comparison

This study evaluates the performance of the GOZH model in assessing the spatial disparities of wheat 
production in Australia by examining the contribution of individual variables, power of determinants (PD) 

Figure 9. Contributions of explanatory variables for each pair of geographically optimal zones of mean wheat production in 
2016 (a) and 2021 (b).

Table 5. Contributions of explanatory variables to dividing optimal 
zones.

2016 2021

Variable Contributes Variable Contributes

ASP 42.29% EVI 37.25%
NTO 24.51% ASP 30.07%
AWC 11.07% NDVI 7.84%
WS 6.72% TP 7.84%
SOC 3.56% NPP 5.23%
PTO 3.16% SLT 3.92%
SND 2.77% BDW 3.27%
ETa 1.58% AWC 1.31%
EVI 1.19% EL 1.31%
TP 0.79% ETa 0.65%
BDW 0.79% AT 0.65%
NPP 0.40% SOC 0.65%
SLP 0.40%
EL 0.40%
CLY 0.40%
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values at different stratified levels, and the overall PD values of the model. The effectiveness of the GOZH 
model is further validated by comparing it with another geospatial heterogeneity model, optimal para-
meters-based geographical detector (OPGD), in the context of spatial heterogeneity research.

Figure 11(a, c) illustrate the contribution of individual variables to the OPGD model, using the same 
explanatory and response variables as inputs. It is evident that in 2016, the OPGD model showed significant 
contributions from variables such as BDW (14.2%), AWC (9.7%), ASP (8.8%), and NTO (8.2%). In 2021, the top 
four variables for the OPGD model were EVI, TP, AT, and SLT, contributing 36.7%, 35.5%, 29.5%, and 24.8%, 
respectively. Figure 11(b,d) depict the differences in individual variable contributions between the two 
models. Compared to the GOZH model, the OPGD model exhibited much lower contributions from 
individual variables. For instance, in 2016, the contribution of AWC in the GOZH model was 20.2% higher 
than in the OPGD model, with the lowest improvement observed for CLY in 2016. This indicates that 
individual variables in the GOZH model contribute more significantly to the spatial disparities of wheat 
production, demonstrating a more substantial impact.

Figure 12 shows the variation in PD values for the top four major variables under different hierarchical 
levels for both GOZH and OPGD models in 2016 and 2021. Figure 12(a)-(d) display the PD value changes for 
the top four major variables (AWC, NTO, ASP, and PTO) in 2016, while Figure 12(e)-(h) present the PD value 
changes for the top four variables (EVI, TP, SLT, and NTO) in 2021 across different spatial stratifications. It is 
evident from the figures that the overall PD values of the GOZH model are relatively higher than those of the 
OPGD model. The PD values of the GOZH model increase with the number of strata, quickly reaching the 
optimal PD value, whereas the PD values of the OPGD model fluctuate at lower levels. Specifically, the PD 
value for EVI in 2021 reaches its optimum at the seventh strata, while SLT and NTO reach their optimum at 
the eighth strata. Overall, the GOZH model consistently exhibits higher PD values relative to the OPGD 
model, signifying the GOZH model’s robust performance in assessing spatial disparities in wheat production.

Finally, the overall PD values for the two models in 2016 and 2021 are as follows: 2016 OPGD: 0.42, 2016 
GOZH: 0.71, 2021 OPGD: 0.65, and 2021 GOZH: 0.83. Clearly, the GOZH model demonstrates superior 
performance in explaining the spatial disparities of wheat production.

5. Discussion

5.1. Spatial disparities and determinants of wheat production in Australia

By integrating spatial autocorrelation, spatial stratified heterogeneity, and decision tree analysis, this study 
develops a geospatial machine learning model that identifies the determinants and analyzes the spatial 
disparities in wheat production. First, utilizing Moran’s I and LISA methodology, this study analyzes the 
spatial autocorrelation of wheat production in Australia, incorporating hotspots and significance analyses. 
The study area was segmented into four geographically optimal zones based on the interactions of multiple 
variables, thereby identifying the key determinants influencing wheat production. Enhancing the geo-
graphic detector model, this model quantifies heterogeneity between regions through stepwise spatial 

Figure 10. Ωvalues in Australia, hotspot and non-hotspot regions, and across individual states using the GOZH model.
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discretization and optimization of geographic areas. The GOZH model demonstrated commendable accu-
racy and precision in assessing the spatial variations of wheat production in Australia. This research provides 
decision support for understanding spatial patterns and disparities in wheat production and supports the 
implementation of measures to improve wheat production and ensure food security, such as precision 
agriculture, soil health management, water management, and the selection of optimal wheat varieties.

Australia is characterized by its vast, sparsely populated landscapes, particularly in the central and western 
regions, where extensive deserts and arid lands are prevalent. These areas typically feature soil types 
unsuitable for agricultural production. In contrast, the eastern, southeastern, and southwestern parts of 
Australia, with suitable rainfall and temperatures, have soils rich in organic matter and humus, making them 
more conducive to crop growth. Consequently, Australia’s wheat-producing areas are concentrated in these 
regions. Climate elements, especially temperature, precipitation, atmospheric pressure, and wind speed, are 
vital for crop growth. Wheat is primarily cultivated in temperate climates and some subtropical and 
Mediterranean regions, providing favorable temperature and rainfall conditions for wheat growth. The 

Figure 11. PD values of individual explanatory variables in the OPGD model in 2016 (a) and 2021 (c), differences in 
individual variable PD values between the OPGD and GOZH models in 2016 (b) and 2021 (d).
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temperate climate, mainly found in NSW, VIC, SA, and the southern part of WA, is crucial for wheat growth, 
particularly the winter rainfall in these regions. The subtropical climate, predominantly in eastern QLD and 
northern NSW, offers relatively mild winters. The Mediterranean climate in southwestern WA and parts of SA 
provides beneficial winter rainfall and moderate temperatures for wheat cultivation. Given the significant 
regional environmental differences among Australian states, this study employs spatial autocorrelation 
methods to analyze wheat production’s clustering and hotspot distribution characteristics. This approach 
allows for a more comprehensive understanding of the geographical and spatial variations and correlations 
of wheat production within the study area.

The factors influencing wheat production are complex, with terrain, climate, soil fertility, and environ-
mental conditions being widely recognized as primary influences (Ajami et al. 2020; Fan et al. 2018; Hodson 
and White 2007). This research incorporates four categories of variables directly affecting wheat production: 
geographic, climatic, soil properties, and environmental variables. Through spatial clustering analysis, 
delineating geographically optimal regions, exploring univariate and multivariate interactions, and model 
comparison and validation, this study comprehensively examines the spatial disparities in wheat production 
across Australia. It identifies the determinative factors contributing to these disparities based on model 
outcomes. Terrain and soil properties directly impact the growth environment and nutrient uptake of wheat, 
while climate and environmental conditions influence the crop’s entire growth cycle and developmental 
processes. These factors interact, collectively shaping the ultimate production and spatial distribution of 
wheat. For example, the wetter La Niña conditions during the 2020–21 season intensified canopy greenness, 
which explains why the Enhanced Vegetation Index (EVI) emerged as the leading determinant that year 
(Bureau of Meteorology 2022); irrigation-efficiency upgrades in New South Wales and Victoria further 
amplified this vegetation signal (Hughes, Donoghoe, and Whittle 2020).

The geospatial machine learning model developed in this study integrates machine learning, geographi-
cal detector, and stratified heterogeneity models, applying it to analyze the spatial heterogeneity of wheat 
production in Australia. The model combines geographic spatial elements with external environmental 
factors, considering the spatial distribution differences in wheat production and the interrelationships 
among various variables influencing these variations. This approach addresses the limitations of existing 
heterogeneity models that fail to account for geographic spatial characteristics and typically consider only 
single-variable impacts (P. Luo et al. 2022). By adopting a comprehensive perspective, this study explores the 
determinants affecting wheat production differences from a geographical standpoint and within multi-
variable interactions. This method represents a novel exploration in the agricultural domain, advancing the 
study of spatial correlations and disparities in crop production.

In summary, studying the spatial heterogeneity of wheat production contributes significantly to enhan-
cing the efficiency of grain production, maintaining food security, improving resource management, 

Figure 12. Variation of PD values for the four principal variables across different stratas in the GOZH and OPGD models in 
2016 ((a) AWC, (b) Nto, (c) ASP, (d) PTO) and 2021 ((e) EVI, (f) TP, (g) SLT, (h) NTO).
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formulating more effective policies, and advancing agricultural science. These aspects are crucial for the 
sustainability of the global agricultural system and the future of food supply, underscoring the importance of 
such research efforts.

5.2. Limitations and future recommendations

This study still has limitations. Because Local Government Areas are the finest resolution at which the 
Australian Bureau of Statistics publishes a fully harmonized, nation-wide dataset pairing wheat yield 
with all environmental covariates, our analysis focused on the two Agricultural Census seasons 
2015–16 and 2020–21. Although a single season is normally sufficient for GD-family models, using 
two contrasting years provides an additional robustness check of the GOZH framework. Local 
Government Areas remain relatively coarse, and future work should downscale wheat-growing regions 
to 1 km or even 100 m grids to capture variability within each LGA more precisely. Once longer, 
consistently compiled time-series data become available, we will apply GOZH in a spatio-temporal 
framework to examine interannual dynamics and confirm the persistence of the spatial determinants 
identified here. Recent advances such as Robust GOZH introduce a Q function to optimize the 
complexity parameter (CP) within the GOZH partitioning process (H. Luo, Luo, and Meng 2025), 
offering an objective, data-driven means to select CP and enhance the stability of geographic zone 
delineation. We will evaluate this approach in future studies to further improve the performance and 
interpretability of our zoning results.

6. Conclusion

This study develops a geospatial machine learning model, integrating spatial autocorrelation, spatial 
stratified heterogeneity, and decision tree analysis to analyze spatial disparities and identify determinants 
in Australian wheat production. This research explores the spatial disparities of wheat production under the 
influence of multiple factors, identifying the determinants behind these variations. The development of the 
geospatial machine learning model has opened new paths for exploring spatial disparities and heteroge-
neity in wheat production. The findings indicate that the interaction of terrain, climate, soil attributes, and 
environmental conditions are the most significant factors affecting wheat production in Australia. Based on 
two-year case studies, the model identifies the determinants causing spatial disparities. The wheat produc-
tion areas are divided into four geographically optimal zones, each exhibiting different determinant 
distribution characteristics, providing strong evidence for adaptive planting, cultivation, and wheat manage-
ment. A comparison of the GOZH and OPGD models showed that the GOZH model consistently had higher 
PD values for individual variables and reached optimal PD values faster than the OPGD model. This indicates 
that the GOZH model is more effective in explaining the spatial disparities in crop production. This research 
contributes to an enhanced understanding of the spatial disparities and determinants of wheat production 
across Australia on a large scale. The developed model can be applied to other crops and regions to analyze 
the spatial disparities of different crops in various areas, thereby improving global grain production and 
ensuring food security more effectively.
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