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Abstract Solute concentrations and accumulation in shallow groundwater can trigger a negative domino
effect of environmental and economic problems. Accurately tracking the solute chemistry of groundwater is
essential for assessing their adverse impacts and pinpointing hotspots of contaminants that require
conservation measures. However, existing mapping methods have been greatly limited by the peculiarities of
shallow groundwater, such as its challenging hydraulic connection, uneven distribution, and complex driving
factors prevalent in arid regions. To address these challenges, we designed a novel framework that integrates
species distribution models (SDMs) with traditional hydrological models and advanced machine learning
algorithms to predict the spatial distribution of groundwater solutes in a multidisciplinary effort. We carried
out a systematic collection of shallow groundwater, deep groundwater, and surface water samples from three
adjacent hydrological units in the arid regions of northwest China. By employing the SDMs framework
originally utilized in ecology to assess biological species suitability, we could simulate and predict solute
concentrations in groundwater. The results emphasized that solutes in surface water were important variables
in the final models for Na+, K+, SO4

2− , and Cl− , while deep groundwater influenced Ca2+. In addition,
integrating predictor variables into the SDMs enabled the discovery of additional valuable information. Our
results highlighted the improved power for mapping groundwater by combining SDMs with multidimensional
driving factors. This novel framework could not only clarify the solute movement mechanisms but also reveal
their spatial patterns via a transdisciplinary approach, offering a versatile tool for groundwater management
and policies.

Plain Language Summary This study examines solute contamination in shallow groundwater,
which can lead to serious environmental and economic issues. Accurately tracking solutes is essential for
understanding their impact and identifying areas that need protection. However, current methods are
constrained by the sparse field samples of shallow groundwater, including its uneven distribution, data
collection difficulties, and complex movement patterns, especially in arid regions. To address these
challenges, we developed a new approach combining species distribution models (SDMs), hydrological
models, and machine learning. This method improves predictions of solute distribution in groundwater with
limited water samples from shallow and deep groundwater, as well as surface water, in northwest China.
Using the SDM framework, we successfully predicted solute concentrations in shallow groundwater, and
found that surface water influenced solutes like Na+, K+, SO4

2− , and Cl− , while deep groundwater affected
Ca2+. Integrating multiple factors into the model provided new insights into the complex interactions
between groundwater and surface water. Our proposed innovative framework enhances the mapping of
groundwater contamination and offers a valuable tool for groundwater management, especially in water‐
scarce regions.
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1. Introduction
Groundwater is an indispensable and widespread resource for sustaining life, ecosystems, and economic stability.
However, the water quality of groundwater has been increasingly deteriorating due to increased consumption and
climate change (Kaushal et al., 2018; Wu et al., 2021). Solute dynamics and accumulation in subsurface water can
induce a series of water quality problems, such as salinization, acidification, mineralization, alkalization, soft-
ening, and hardening (Wu et al., 2021). In addition, shallow groundwater (SGW, unconfined aquifers), serving as
the transitional zone between surface water and deep groundwater (confined aquifers) (Figure 1), is the most
active and variable layer in the groundwater system (Waller, 1994). This makes SGW particularly vulnerable to
ecological challenges and anthropogenic activities (Smith et al., 2018; Thaw et al., 2022). Thus, the solute issues
of SGW are prone to triggering a domino effect, leading to a series of negative impacts including soil salinization,
vegetation degeneration, desertification, and sandstorms. These impacts may ultimately break the ecosystem
balance, threaten human lives (Lapworth et al., 2013), and endanger biodiversity (Giam et al., 2018).

Despite these significant impacts, the regular water quality monitoring of SGW over large‐scale area has been
challenging due to the lack of available data worldwide, especially in dryland regions (Setiawan et al., 2022). As
shown in Figure 1, the dynamics and transport of SGW solutes often involve both natural processes and human
activities, closely intertwining with the surrounding environments. SGW solutes may accumulate through mul-
tiple pathways, including hydraulic processes, topography, climate, plant interactions, soil properties, and
anthropogenic activities such as irrigation, abstraction, pesticides and fertilizers, urbanization and sewage
disposal (Nolan & Weber, 2015). High order interactions and complex relationships between solutes and asso-
ciated drivers thus often exist. For example, irrigation can move groundwater level upwards, potentially
increasing salt and sodium concentrations within the root zone (Shouse et al., 2010) (Figure 1). This in turn
triggers the implementation of additional mitigation methods to reduce soil salinization in cropping systems.
These relationships could be more complicated in arid regions (BenMessaoud et al., 2021; Dandge & Patil, 2022),
and understanding the dynamics of groundwater chemistry in such areas is crucial for sustainable development
goals (e.g., SDG6‐clean water) (Sadoff et al., 2020).

Previous studies have extensively investigated the sources and dynamics of groundwater chemistry to address
three primary questions: What factors drive the movements of groundwater chemistry? How to quantify and
evaluate the transport of these chemicals? And how can we predict their spatial distributions? Previous studies
have made many efforts to address these general questions. For example, one promising approach is the intro-
duction of models applicable in hydro‐geochemistry, such as box models and physics‐based models (Maavara
et al., 2021; Rogers et al., 2021). These methods have proven to be more effective than traditional observational
techniques in tracing the reactive chemistry of surface water and groundwater and quantifying their relative
contributions. They not only reduce the need for time‐consuming and labor‐intensive tasks, but also eliminate the
requirement for specialized training (Barthold et al., 2011). Additionally, many novel algorithms have been
proposed to define important driving factors and their interactive impacts on geochemical cycles at terrestrial‐
aquatic interfaces (Cheng et al., 2021; Enguehard et al., 2022). Despite significant advancements in the field,
three major limitations remain to be addressed. Gap 1 (hydraulic connection): Hydraulic connection substantially
influences solute dynamics, but previous studies were mostly confined to specific regional or site‐specific
groundwater systems, such as geomorphic units, administrative units, hydrological units, or typical land use
locations (key result 1 in Table S1 in Supporting Information S1). Thus, the simulation of solute dynamics may
suffer from unrealistic representations if the hydraulic factors are neglected. This limitation calls for a more
comprehensive approach that considers the broader hydrological context and incorporates hydraulic connectivity
between aquifers; Gap 2 (incorporating variables): As solute dynamics in groundwater are driven by both intrinsic
and extrinsic factors, it is necessary to incorporate these factors into mapping models to enhance accuracy. Yet,
these predictor variables exhibit spatial‐temporal heterogeneity, and the scale mismatch between them and
groundwater pose challenges to gain deeper insights into the underlying mechanisms, especially at large‐scale
areas (key result 2 in Table S1 in Supporting Information S1). Addressing this limitation requires to effec-
tively capture the complex interplay between driving factors and solute dynamics across various scales; Gap 3
(spatial prediction): Existing mapping methods heavily rely on spatial interpolation techniques such as kriging
and inverse distance weighting for groundwater prediction (e.g., option 2 in Figure 2, key result 3 in Table S1 in
Supporting Information S1). However, these traditional approaches encounter challenges in arid regions due to
the patchy and sparse distributions of groundwater field observations (Figures 2a and 2c). The limited availability
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Figure 1. A schematic illustration of groundwater solute dynamics, showing the hydraulic connections and interplay between natural processes (e.g., climate, soil
properties, plant uptake, and groundwater‐surface water interactions) and human disturbances (e.g., urbanization, agriculture, waste disposal), as well as their combined
impact on groundwater systems.

Figure 2. Comparison of this study's approach with two existing ones, species distribution model (SDM) and Kriging options. Data requirements: All require input
distribution data but Kriging requires uniform high density data, (a) water sampling points in this study, (b) discontinuous biological species locations in SDM, (c) high‐
density, uniformly distributed sampling data in Kriging. Predictor variables: Both integrate continuous environmental variables but Kriging depends solely on spatial
autocorrelation, (d) natural processes and human disturbances, (e) continuous environmental factors in SDM, (f) reliance solely on spatial autocorrelation in Kriging.
Projected maps: Both output spatially continuous map but Kriging produces non‐contextual predictions, (g) continuous solute prediction in this study, (h) habitat
distribution, (i) heavy metal prediction without geographic context in Kriging.
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of representative samples hampers precise interpolation, necessitating the development of novel methods that
overcome the data scarcity issue and couple into accurate predictors.

Our proposed solution is the “ecologicalization” of solute to address these gaps, which is to borrow a classic
ecological approach, species distribution models (SDMs) and apply it towards solute distributions in lieu of
biological species (Option 1 in Figure 2). SDMs involve three steps: selecting biological observations, identifying
predictor variables, and quantifying their relationships to create distribution maps by projecting this onto envi-
ronmental layers (Figures 2b, 2e, and 2h). These steps align with the three scientific gaps as follows. First, SDMs
are designed to handle sparse and discontinuous biological data, such as dispersed populations (Figure 2b), which
contrasts with traditional Kriging methods that require dense, continuous sampling (Figure 2c). Second, SDMs
predict species distribution by modeling relationships between species occurrences and environmental factors
(Elith & Leathwick, 2009), integrating geographic layers (Figure 2e). In contrast, Kriging ignores environmental
factors (Figure 2f). Third, SDMs project the model onto geographic layers, capturing environmental influences
like terrain (Figure 2h), while Kriging results deviate (Figure 2i). Thus, the key steps in the SDM framework
systematically address the three scientific gaps, positioning SDMs as a promising tool for filling these knowledge
gaps. While SDMs have demonstrated significant predictive power in various research fields (Clemente
et al., 2019; Harrigan et al., 2014; Li et al., 2020), their application to groundwater chemistry remains largely
unexplored.

Here, we proposed a novel framework for predicting the spatial distribution of solutes in shallow groundwater
(SGW) that builds on the classic SDM conceptual framework by modifying and combining it with hydrological
models, statistical algorithms, and machine learning techniques. We “ecologicalized” solute concentrations into
the incidence (presence/absence) of biological species. The solute predictor variables, which link five‐
dimensional drivers that govern groundwater dynamics (topography, climate, hydraulic, soil property and hu-
man activity, Figure 1), were then coupled into the SDMs to predict the spatial patterns of groundwater chemistry.
In particular, we aimed to: (a) establish hydraulic connection between surface water and groundwater in the
adjacent catchments for solute transport analysis; (b) better interpret the dynamic mechanism of solutes in SGW
by employing a comprehensive system that integrates five‐dimensional predictor variables; and (c) improve the
accuracy of groundwater chemistry mapping. Our study highlights the potential of SDMs for better mapping
SGW solutes on regional to large scales from an ecological perspective.

2. Study Area
Our study areas included the Badain Jaran Desert (BJD), Heihe River Basin (HRB), and Shiyanghe River Basin
(SYH) in northwest China (Figure 3a). This area covers approximately 38 × 104 km2 and presents extremely
complex hydraulic connectivity at the junction areas of the above three hydrological units. Previous research has
provided valuable information on the groundwater flow paths, geological structure and other background com-
positions (Chen et al., 2006; Ding &Wang, 2007; Wu et al., 2010) (Figure 3). The water properties in this area are
notably unique, with nearly 100 hypersaline and freshwater lakes coexisting in the arid BJD. Furthermore, the
salinity of groundwater in the Hexi Corridor ranks among the highest levels observed in China (Wang
et al., 2017), rendering it an ideal location for our study due to the solute diversity within these water bodies.

There are exceptionally intricate conditions in this study area due to its complex natural background. The
background topography exhibits significant spatial heterogeneity, with elevation ranging from 700 to 5,000 m asl.
The area is surrounded by high mountains, deserts, and other landform units. Additionally, the landscape of BJD
is characterized by continuous crescentic mega‐dunes, which are the tallest sand dunes on earth, with a relative
height of 200–300 m (Wang & Zhou, 2018). These unique traits make groundwater flow directions and hydraulic
connections highly uncertain. Therefore, the traditional spatial interpolation methods applicable in flat areas are
not suitable for this study area. In addition, the geological variability of this region is evident (Figure 3b). The BJD
geological structure, located in the Alxa block, has a gentle landform with denuded low hills and inter‐mountain
depressions. The surface is covered by Quaternary sediments that form vast Gobi and desert areas (BB′ in
Figure 3) (Ma & Edmunds, 2006). The HRB has a deep Quaternary sedimentary layer that acts as an efficient
underground water storage area. The base is composed of Neo‐Tertiary or Cretaceous layers overlain by hundreds
of meters to over a thousand meters of Quaternary loose material with high groundwater content (AA′ in Figure 3)
(Wang et al., 2013). In Figure 3 CC′, the Jinchang basin is characterized by interbedded sub‐consolidated fluvio‐
lacustrine sandstones from the Pliocene and early Pleistocene periods, with an average thickness of 100–200 m in
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Figure 3. (a) Overview of cross‐sections, landforms, and groundwater flow directions within three hydrological units in the
Badain Jaran Desert region. (b) Cross‐sectional profiles corresponding to the locations marked in (a), showing detailed
geological structures, aquifers, and sedimentary layers.
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the southern region and sandy‐clay and clay interbeds, with a thickness of 70–100 m in the northern region (Ma
et al., 2010). The high alpine and remote desert areas experience a diverse range of climates, characterized by
diminishing levels of moisture with decreasing altitude. In the middle and downstream regions of these catch-
ments, the annual precipitation averages around 200 and 50 mm, respectively, while evaporation rates soar
beyond 2,000 mm. The annual average temperatures are approximately 6°C and 8°C in the middle and lower
regions (Li et al., 2022). The BJD is located at the boundary of the East Asian Monsoon and receives an annual
precipitation of 50–60 mm, primarily during June‐August. It is prone to an annual evaporation of over 3,500 mm,
with an average temperature of 7–8°C (Wang & Zhou, 2018).

The anthropogenic factors of the study area show apparent spatial heterogeneity as well. The corridor plains,
located in the middle reaches of HRB and SYH catchments, serve as population centers and substantial agri-
cultural production bases, popularly known as “ancient Silk Road,” “Golden Zhangye” and “Silver Wuwei”
(Zhou et al., 2015). Human activities in the middle and lower reaches of the catchments such as spring irrigation
and summer floods have enhanced the interactions between surface water and groundwater. The discharge of
pesticides, chemical fertilizers, and wastewater from human settlements has significantly impacted groundwater
solutes. In contrast, the alpine regions, Gurinai and Guaizi Lake have relatively sparse population densities.
Moreover, in the BJD, the population density is less than 1 person per 10 km2. These distinct natural and
anthropogenic ’factors on a large spatial scale have made the solute transport mechanism in SGW complex.

3. Methods
3.1. Adapting SDM for Hydrological Application

3.1.1. Groundwater and Surface Water Chemistry Data

Groundwater and surface water solute measurements throughout the study area were compiled from a compre-
hensive collection of published or publicly available sources. A summary of the collected solute measurements,
including basic statistics and sources, can be found in the Supporting Information S1, Table S2 in Supporting
Information S1. We strictly adhered to the classic methodology and process for collecting groundwater chemical
indicator data (Amini et al., 2008; Podgorski & Berg, 2022; Podgorski et al., 2018). Based on our research ob-
jectives and unique features of the region, the following criterions for solute selection were applied to minimize
possible bias: (a) Samples were collected from georeferenced locations along the groundwater flow paths, aiming
to provide a representative and informative data set (Figure 3a); (b) Solute indicators were employed to assess
water quality; (c)Well depths, along with any information regarding the type of surface water bodies if applicable,
were meticulously documented in the literature; (d) Conventional observation indices, such as ion measurements
in mg/L or mol/L, were utilized for quantifying water quality; (e) The sampling process and laboratory analysis
procedures were thoroughly documented, and groundwater samples were primarily obtained from boreholes,
monitoring wells, or other appropriate sampling techniques. In total, we collected 82 SGW samples, 114 deep
groundwater samples, and 170 surface water samples, along the potential groundwater flow directions (Figure 4,
Table S2 in Supporting Information S1). Major ions, such as Ca2+, Mg2+, Na+, K+, SO4

2− , Cl− , HCO3
− , were

selected as the solute tracers to investigate the dynamics of solutes in SGW.

Based on both common standards in Asia and field observations in the study area (Fendorf et al., 2010; Wang
et al., 2013), we used a buried depth of 20 m as the threshold for distinguishing between shallow and deep
groundwater. Furthermore, to investigate the hydraulic connections between different hydrological units in the
study area, we divided the groundwater into seven mapped zones by comprehensively considering the spatial
distributions of SGW observation wells, watershed sections, and potential groundwater flow directions. These
zones were designated as Zone 1 (Z1), Z2, and Z3, representing the upper, middle, and lower reaches of the HRB,
respectively. Additionally, Z4 was situated in the Gurinai area, Z5 in the BJD, Z6 in the Guaizihu Lake area, and
Z7 in the SYH basin (Figure 4). To aid clarity, we further categorized surface water as Layer 1 (L1), which
includes precipitation, lake, and river water, while shallow and deep groundwater were classified as Layer 2 (L2)
and Layer 3 (L3), respectively (Figure 4).

3.1.2. Selection of Predictor Variables for SDM

The predictor variables were selected as proxies to model the subsurface conditions if: (a) They had been proven
by previous studies to have profound impacts on the solute dynamics; (b) They needed to have broad applicability
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beyond this study area; and (c) these factors had to be spatially quantifiable and exhibit minimal collinearity with
each other. In total, we collected five types of explanatory variables (Table 1). These variables include topo-
graphical patterns; climate and vegetation variables, including normalized difference vegetation index (NDVI),
precipitation, evaporation, and ground surface temperature (GST); human activity variables, such as gross do-
mestic product (GDP), population density, land use categories; and soil properties. The land use data contains six
categories: agriculture, forest, grassland, water, intensive‐use areas, and unexploited areas (Table 1). Given that
SDMs require predictor variables in a continuous map format, we established innovative hydraulic variables and
generated continuous maps to address Gap 1 (hydraulic connection). A key improvement in our study is the
inclusion of spatially continuous maps of groundwater solutes as predictor variables. These hydraulic variables
were derived from preliminary output maps using SDMs that considered only topography conditions, with
detailed generation steps described in Section 3.2.2. Other variables were retrieved from various sources,
including social, statistical and geographic data. For example, terrain, climate and vegetation, and human activity
data were extracted from the Resources and Environment Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn). Additionally, we aquired 250 m‐resolution soil grid layers and 10 indicators, including
cation exchange capacity, soil coarseness, silt, clay contents, and pH, from the open database licensed by Soil-
Grids organization under the Zenodo organization (https://zenodo.org/). Overall, we selected 30 predictor vari-
ables from five categories (Table 1, Figure 1) to more accurately capture the underlying mechanism governing
water solutes, thereby improving the model's predictive performance to reflect real‐world scenarios.

3.1.3. SDM Algorithm

To enhance the applicability and versatility of our framework, we moved beyond relying solely on individual
SDMs such as MAXENT, BIOCLIM, and DOMAIN. Instead, we transitioned to an ensemble framework that

Figure 4. Sampling sites for various water bodies across zones. Sites include shallow wells (L2), deep wells (L3), springs (L3), rivers, lakes, and precipitation (L1). Red
dashed lines indicate zones, and blue outlines mark hydraulic boundaries.
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enables the incorporation of a wider range of techniques and methodologies. Drawing from foundational SDMs
tutorials (Guisan & Thuiller, 2005; Hijmans & Elith, 2013), we further designed and modified a SDMs frame-
work. The formula for SDMs is generally expressed as:

logit(Y) = α +∑
n

i=1
( βiXi) (1)

Logit (Y) represents the logarithm of the log odds for the probability or potential distribution of species, while X
represents the related variables, such as competitors, predators, climate, and terrain. β is the regression coefficient
that measures the contribution of each variable on the species distribution.

3.2. Integrated Hydrologic‐SDM‐ML Framework

To address the three knowledge gaps, the framework includes four steps (Figure 5). Step 1 develops preliminary
maps for solutes in shallow and deep groundwater. Step 2 extracts two raster layers using surface sampling points,
establishing solute dynamics between hydrological layers. Step 3 optimizes relationships between solutes and

Table 1
Potential Predictor Variables for Solutes in Shallow Groundwater

Variables Comments Resolution Unit

Topography patterns

DEM(6x) elevation, flow direction, slope, rough, tpi, tri 30 m m asl

Hydraulic connections

SGWchemistry Shallow groundwater chemistry 30 m mg/L

DGWchemistry Deep groundwater chemistry 30 m mg/L

Climate & plant variables

NDVI Normalized difference vegetation index 1 km ‐

evaporation Annual evaporation amount 500 m mm

GST Ground surface temperature 500 m °C

precipitation Annual precipitation amount 500 m mm

Human variables

GDP gross domestic product 1 km 104 RMB km− 2

P_ density population density 1 km inhabitants km− 2

Land use(6x) Six different land use types 30 m m2

Soil properties

soil. cation cation exchange capacity 250 m _

soil. coarse soil coarse fragment 250 m volumetric %

soil. texture soil texture classes 250 m 1,2,3,…12

soil. silt soil silt content 250 m % (kg/kg)

soil. clay soil clay content 250 m % (kg/kg)

soil. sand soil sand content 250 m % (kg/kg)

soil. carbon soil organic carbon content 250 m 5 g kg− 1

soil. pH soil pH 250 m _

soil. water soil water content 250 m volumetric %

soil. bulk soil bulk density 250 m 10 kg m− 3

Note. The six topographic patterns were extracted from the digital elevation model (DEM) products. The land use types
conclude agricultural land, forest land, grassland, water bodies, built‐up land and unexploited land. Soil property indicators
were sampled at a depth of 10 cm below the surface, and the toil texture was classified 12 types: sand, loamy sand, sandy
loam, sandy clay loam, loam, silt loam, silt, silty clay loam, clay, clay loam, sandy clay, and silty clay.
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predictor variables, and Step 4 projects these relationships into SDMs to resolve Gap 2 (variable incorporation)
and Gap 3 (spatial prediction). By integrating hydrological models, statistical analyses, and machine learning, the
framework enhances both efficacy and applicability.

3.2.1. Hydraulic Connection Analysis (Step 1)

We used hierarchical cluster analysis and the end member mixing analysis (EMMA) tool to establish hydraulic
connections between adjacent hydrological units. By clustering water samples based on chemical dissimilarity,
we identified potential end members and quantified hydraulic connections across seven zones.

3.2.1.1. Hierarchical Cluster Analysis

This section establishes a quantitative understanding of the connections between neighboring hydrological units
(Step 1 in Figure 5), which provides a basis for generating spatially continuous raster data for groundwater and
subsequent analysis of solute dynamics. We used hierarchical clustering to categorize water samples by their
chemical compositions. This method groups objects by dissimilarity, initially placing each in its own cluster. It
then merges the most similar clusters iteratively until one remains, representing a distinct hydrogeochemical state.
To accurately capture chemical features, we combined Euclidean distance and Ward's method. The Euclidean
distance between water types α and β for N quantitative chemical concentrations was defined as:

Edαβ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(Xiα − Xiβ)

2

√
√
√

(2)

where Ed is the Euclidean distance, with Xiα and Xiβ being the concentrations of specific soluble ion “i” for water
types α and β, respectively. Next, we employed the Ward's minimum variance method to construct a dendrogram
for classifying the water samples based on their chemical compositions. Based on the data characteristics in this
study, we divided the data set into six distinct groups.

Figure 5. Flowchart outlining the main steps to address specific knowledge gaps. Step 1: Hydraulic connection‐ identify appropriate end members for hydrograph
separation using dendrograms and EMMA (end‐member mixing analysis). Step 2: Generating hydraulic variables‐ apply SDMs (species distribution models) with
continuous rasters, incorporating topography as an environmental layer to address Gap 1 (hydraulic connection). Step 3: Relationships controlling SGW solute fate‐
select key predictor variables and analyze solute distribution and relationships. Step 4: Improvements and validation‐ conduct final mapping with modified SDMs by
integrating quantitative relationships and validate the results to improve model accuracy.
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3.2.1.2. End Member Mixing Analysis

The EMMA, a typical hydrograph separation method, can explain the chemical ingredients of a water body as a
mixture of potential end members using conservative tracers. The method is described as the following equations
(Christophersen et al., 1990):

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 = a1 + a2 + a3

C1
t = C1

1a1 + C1
2a2 + C1

3a3

C2
t = C2

1a1 + C2
2a2 + C2

3a3

(3)

where a1, a2, and a3 are the discharge fractions of end members. Ct
1 and Ct

2 are the tracer concentrations of mixed
groundwater.Cn

1 andCn
2 are the tracer concentrations of the nth end member. In this study, the Ct

1 andCt
2 are the

tracer concentrations of shallow groundwater in the BJD, which was assumed to be recharged from different water
types in the three hydrological units.

3.2.2. Generating Hydraulic Variable Layers (Step 2)

We incorporated topographic variables into the SDMs to generate spatially continuous raster layers for both SGW
and deep groundwater. We then extracted these raster layers from the sampling locations to establish hydraulic
connections between water samples at different depths. The topographic features, including flow direction,
elevation, slope, TPI, roughness, and TRI, were extracted from the Digital Elevation Model (DEM) product. We
then utilized the Random Forest algorithm to establish the relationships between solute concentrations and these
topographic features (step 2 in Figure 5). Random Forest is an ensemble algorithm known for its robust per-
formance in regression and classification modeling (Wang et al., 2016). The regression tree splitting criterion
involves selecting the input variable with the lowest Gini index,

IG (tX(xi)) = 1 − ∑
m

j=1
f (tX(xi), j)

2
(4)

f (tx(xi), j)
2 represents the proportion of samples with the value xi belonging to leaf j as node t. The predicted value

of an observation is calculated by averaging the outputs of multiple regression trees. Then, the prediction value of
the random forest regression is obtained by averaging the regression prediction values of the decision trees, as
shown in the following equation,

M(X) =
1
m
∑
n

i=1
hi(x) (5)

The groundwater chemistry and geology relationship established by Random Forest in this study can be further
mapped onto geographic layers of environmental information to improve the prediction accuracy. Although this
approach may introduce uncertainties due to the spatially limited data from the water sampling points, it captures
the influence of surface water and deep groundwater on the solute dynamics of shallow groundwater. This im-
proves prediction accuracy and makes the simulation more realistic and reliable compared to traditional inter-
polation methods.

3.2.3. Analyzing Relationships Between Solutes and Predictor Variables (Step 3)

To comprehensively analyze the relationships between solutes and predictor variables, we employed model
selection and incorporated several algorithms (step 3 in Figure 5). Generalized linear model (GLM) allows for
direct observation of the quantitative associations between solutes and variables using linear functions. Random
Forest was used for variable importance analysis on the initial set of 30 predictor variables. This analysis assisted
in selecting the top two drivers in each dimension for subsequent model selection to avoid the over‐fit analysis.
Generalized additive model (GAM) was then utilized to visualize nonlinear effects in the relationships
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graphically. Consequently, we quantitatively assessed the contributions of individual variable, determining their
magnitude and direction of influence on the solute dynamics.

During model selection, we employed the Akaike Information Criterion corrected for small sample sizes (AICc)
to choose the final model from the best models with the highest area under the curve, as determined through the
cross‐validation process. The formula for calculating AICc is as follows:

AICc = AIC +
2K(K + 1)
n − K − 1

(6)

K represents the number of free parameters in the model, including regression coefficients, intercept, and other
model parameters, while n represents the number of observed samples.

3.2.4. Final Mapping and Model Assessment (Step 4)

To generate final prediction maps, we projected the quantitative relationships of final models that were identified
in the previous step. The top predictor variables corresponding to each solute in the final model were then in-
tegrated into the modified SDMs, with topography serving as the background layer. Although we employed
statistical analysis in Step 3 for visual representation of the relationships, we utilized the more robust Random
Forest algorithm in this stage. The Random Forest can help fit the regression relationships between solutes and the
environmental layers representing various variables in the final model to generate improved output maps by
Equation 1.

To evaluate the predictive performance of our model for groundwater, we utilized K‐fold cross‐validation, in
which the data set was randomly divided into 80% training and 20% testing sets (Podgorski & Berg, 2020). We
also examined different measures, such as the Area Under the receiver operating characteristic curve (AUC),
sensitivity (the true positive rate), and specificity (the true negative rate). Considering the characteristics of our
data and practical requirements, we also comprehensively evaluated the reliability and applicability of the model
by comparing the preliminary maps from Step 2, incorporating our expertise, and considering relevant literature
records (Amini et al., 2008).

4. Results
4.1. Hydraulic Connection Variables

Based on the expertise of the study area (Figure 3a) and the results of dendrogram analysis (Figure 6a), we
selected L2Z5 (Layer2Zone5, shallow groundwater in BJD, Figure 4) as the receiving waterbody, while other
water bodies at different depths were considered as potential end members.

Most waters in L1 (Layer1, surface water) exhibited similar characteristics, except for the saline lakes in the BJD
region (Figure 6a). The cluster analysis revealed that river water from Zones 1, 2, 3, and Z7 (HRB and SYH in
Figure 4, indicated by yellow rectangles in Figure 6a), along with precipitation in Zones 1 and 7 (also represented
by yellow rectangles in Figure 6a), shared similar geochemical features and were grouped together on the same
branches (purple trees in Figure 6a). We determined that precipitation in Z5 (L1Z5_precipitation, blue tree in
Figure 6a) and Z7 (L1Z7_precipitation, purple tree in Figure 6a) were the dominant end members, contributing
78.07% and 21.93%, respectively (Figure 6b, Table 2).

We observed distinct clustering patterns in the groundwater distribution (Figure 6a). Groundwater around the BJD
region formed clusters on the purple branches, as indicated by the red rectangles in Figure 6a. Conversely,
groundwater in the middle and lower regions of the HRB and SYH areas clustered on the blue branches (rep-
resented by the green rectangles in Figure 6a). Consequently, for the EMMA process in L2 (Layer2, shallow
groundwater), we identified the optimal combination as L2Z4 and L2Z7 (shallow groundwater in Zone 4 and
Zone 7, respectively, Figure 4). The discharge fractions for them were calculated as 7.17% and 92.83%,
respectively (Figure 6c, Table 2). Moving on to L3 (Layer3, deep groundwater), we considered well water from
L3Z3, L3Z6, and spring water from L3Z4 as the end members (Figure 6d). Their respective discharge fractions
were calculated as 6.39%, 11.88%, and 81.73% (Table 2). The specific sources of lake water remain controversial,
however, the description of the hydrologic connections in this study is consistent with previous studies in the
region (Ma et al., 2010; Wang et al., 2013).
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The saline lakes in BJD region displayed distinctive geochemical properties, preventing their grouping with other
water types. The lake water in Z5 (L1Z5_lake) exhibited the longest orange branch length in the dendrogram
compared to other waters (Figure 6a). These lakes were typically characterized by high levels of anions such as
anions Cl− (60,160.26 mg/L) and SO4

2− (21,804.70 mg/L), as well as cations including Na+ (60,990.44 mg/L)

Figure 6. (a) Hierarchical cluster dendrogram illustrating the grouping of water samples, including surface water, shallow groundwater, and deep groundwater from
different zones in the study area. (b) End‐member mixing analysis (EMMA) for L2Z5 (shallow groundwater in Zone 5) using surface water, showing Na+ and SO4

2−

concentrations. (c) EMMA for L2Z5 using shallow groundwater. (d) EMMA for L2Z5 using deep groundwater.

Table 2
Final Tracers for End Member Mixing Analysis (EMMA), With Corresponding Discharge Fractions in the Study Area

Recharge components EM quantity EM SO4
2− Na+ Fraction (%)

layer 1 (Surface water) 2 L1Z5_precipitation 140 370 78.07

L1Z7_precipitation 14.17 2.29 21.93

layer 2 (Shallow groundwater) 2 L2Z4_well 331.25 357.33 7.17

L2Z7_well 302.97 187.21 92.83

layer 3 (Deep groundwater) 3 L3Z3_well 520.62 341.51 6.39

L3Z6_well 270.76 422.7 11.88

L3Z4_spring 57.47 126 81.73

Note. EM, end member.
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and K+ (4,641.87 mg/L) (Table S2 in Supporting Information S1). In comparison, these solute concentrations
were lower in L1Z4 (Gurinai areas in HRB, Figure 4), measuring at 4,987.00, 3,912.57, 5,074.86, and 184.20 mg/
L, respectively (Table S2 in Supporting Information S1).

4.2. Tracking Footprints of SGW Solutes

The top models for mapping solutes in the SGW were selected through model selection using all possible
combinations of explanatory variables. Top models with the lowest AICc values are presented in Table 3, which
indicates their superior ability to fit the data compared to other models with high AICc values. The hydraulic
interactions between the surface and deep groundwater layers are driving the SGW solute dynamics. We found
Na+, SO4

2− , and Cl− ions in the SGW were negatively correlated with the corresponding ions in surface water.
Their correlation coefficients were − 20.64, − 26.36, and − 18.5, respectively (Table 3). A non‐linear relationship
exhibited between Na+, SO4

2− in SGW and the corresponding ions in surface water, whereas Cl− featured a weak
linear negative correlation with Cl− in surface water (P < 0.05*, Figure 7, Table S3 in Supporting Informa-
tion S1). Climate variables also had significant impacts on solute, with ground surface temperature (GST) being a
significant factor in the final models for Ca2+ and SO4

2− , evaporation for Mg2+ and K+, and precipitation for
Na+, SO4

2− , and Cl− (Table 3). GST was significantly correlated with HCO3
− in SGW (p < 0.05*) and showed a

first peak when the annual average GST was 3°C, reaching a steady state after the GST exceeded 7°C (Table S3 in
Supporting Information S1, Figure 7).

The human influence was also observed to be pronounced, as evidenced by the positive correlations between
“population density” and Na+, SO4

2− , and HCO3
− in the final models (Table 3). This suggests that human ac-

tivities could be the key source of these solutes. Nonlinear analysis of SO4
2− showed a significant positive

correlation with “population density” (p < 0.05*, Table S3 in Supporting Information S1, Figure 7). “Unexploited
area” was identified as an explanatory factor for the final models of Ca2+ and Cl− , with coefficients of − 1.96 and
− 27.35, respectively (Table 3). In terms of soil properties, soil coarse fragments were negatively correlated with
Mg2+, SO4

2− , and HCO3
− (Table 3, Figure 7), while soil carbon showed a positive correlation with Cl− .

4.3. Improvements of Mapping Solute With Predictor Variables

4.3.1. Maps With Only Topography Variables

Both SDMs obtained (topography‐only, and all predictor variables) presented high mapping accuracy, with high
AUC (area under the curve, 0.88–0.99), PCC (proportion of correctly predicted occurrences, 0.83–0.98), and high
sensitivity (0.99–1) (Table S4 in Supporting Information S1). The output maps of solutes that considered solely
topographical information by the SDMs were presented in the first columns of Figures 8 and 9. This means that
only topography data was used to predict the spatial patterns of shallow groundwater solutes. Our findings
indicated that all other ions showed a negative correlation with increasing altitude, except for Mg2+ and SO4

2−

Table 3
Final Models of Shallow Groundwater Solutes Identified Through Model Selection Based on AICc

Solutes Predict variables in final model df logLik AICc Weight

Ca2+ 8.66* (Ca.L3) + 13* GST‐1.96(L6_unexploited) + 51.48 5 − 592.48 1,195.4 0.45

Mg2+ − 27.21* (evaporation)‐17.33* (soil. coarse) + 69.68 4 − 696.5 1,401.29 0.31

Na+ 3.42* (L2_forest) + 5.21* (L3_grassland)‐20.64* (Na.L1) + 18.08* (pdensity)‐110.46*
(precipitation) + 230.23

7 − 839.42 1,693.65 0.07

K+ 5.82* (evaporation) + 0.44* (K.L1) +15.83 4 − 499.81 1,007.91 0.15

SO4
2− − 267.7* (GST) + 72.45* (pdensity)‐303.62* (precipitation)‐26.36* (SO4.L1)‐64.67* (soil.

coarse) + 321.39
7 − 911.51 1,837.82 0.24

Cl− − 18.75* (Cl. L1)‐27.35* (L6_unexploited)‐143.56* (precipitation) + 28.34* (soil. carbon)
+ 219.08

6 − 830.73 1,674.07 0.39

HCO3
− 5.09* (pdensity)‐24.81* (soil. coarse) + 264.77 4 − 837.95 1,684.18 0.09

Note. df = Degrees of freedom. Weight = Akaike weight.
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which displayed high values in some high mountain areas. This pattern was particularly noticeable in the Yabulai
and LongshouMountains located on the southern edge of BJD. In the shallow groundwater of the BJD's lake area,
Mg2+, K+, and SO4

2− were predicted to be hotspots, while other ions corresponded to low‐value areas.

Figure 7. Smoothed fits of relationships between shallow groundwater solutes and four categories of explanatory variables: hydraulic (first column), climate (second
column), human activity (third column), and soil properties (fourth column). Each panel shows the influence of a specific variable. Shaded areas represent confidence
intervals around the fitted models.
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Figure 8. Comparative analysis of predicted spatial distributions of shallow groundwater cations using species distribution models (SDMs). First column: Predictions
based on topography alone using SDMs (unit: mg/L). Second column: Predictions from the final SDM model incorporating all predictors (unit: mg/L). Third column:
Difference maps illustrating the improvements, calculated by subtracting the first column from the second, then dividing by the first column to express the change as a
percentage. Positive values represent overestimation, while negative values indicate underestimation.
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4.3.2. Final Maps With All Predictor Variables

We integrated the SGW solute variables represented by the top model in Table 3 into SDMs for mapping the
solute footprints. The resultant maps and improvements are displayed in the second and third columns of
Figures 8 and 9, respectively. The output maps indicated a narrower predicted range for Ca2+, K+, and Cl− , but a
broader predicted range for Mg2+ and SO4

2− . However, there were no significant changes in the variations
predicted for Na+ and HCO3

− (Figures 8 and 9). The incorporation of more intricate variable relationships
facilitated the identification of additional hotspots in the predictions. The differences observed between the maps
highlighted the importance of the additional variables in predicting the spatial patterns of shallow groundwater
solutes. For instance, the predictor variables of Ca2+ can be represented by “Ca2+ ∼ 8.66* (Ca2+ . L3)+13* GST‐
1.96 (L6_ unexploited) + 51.48,” and the narrower predicted range in the final map demonstrated the crucial role
of “unexploited area” (p < 2e− 16). The SO4

2− is an important indicator of groundwater pollution resulting from

Figure 9. Comparative analysis of predicted spatial distributions of shallow groundwater anions using species distribution models (SDMs). First column: Predictions
based on topography alone using SDMs (unit: mg/L). Second column: Predictions from the final SDM model incorporating all predictors (unit: mg/L). Third column:
Difference maps illustrating the improvements, calculated by subtracting the first column from the second, then dividing by the first column to express the change as a
percentage. Positive values represent overestimation, while negative values indicate underestimation.
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human activities. In this study, we identified its variables as “SO4
2− ∼ 72.45* (p density)‐267.7* (GST) − 303.62*

(precipitation)‐26.36* (SO4
2− . L1)‐64.67* (soil. coarse)” (Table 3, Figure 10). Our analysis revealed that, except

for a positive correlation with “population density,” all other factors showed a negative correlation with SO4
2− .

Therefore, the increased trend of SO4
2− in the final maps demonstrated the significant impact of human activities

(p < 0.005). Additionally, our investigation uncovered new hotspot points of SO4
2− in big cities such as Jiuquan,

Jiayuguan, Zhangye, and other areas along the Hexi Corridor (Figure 10).

5. Discussion
5.1. A Hydrologically Enhanced SDM With Multi‐Dimensional Predictors

A key strength of our hydrologically enhanced SDM (Species Distribution Model) is its minimal dependence on
field data,making it particularly suitable for environmental samples (e.g., groundwater, soil) that are challenging to
collect in natural settings. For the sparse distribution of water sampling points under extreme drought conditions in
this study, Option 1 (SDM) significantly outperformsOption 2 (traditional interpolationmethods, such as Kriging)
(Figure 2). Compared to traditional Kriging, SDMs offer more flexibility in the requirements for input biological
observation data. The applicability of Kriging is constrained by the density and uniformity of the sample points,
making it difficult to accommodate the sparse data characteristic present in this study. For instance, Figure 2c shows
a typical example of Kriging application (Lv, 2019), which is based on high‐density sampling with a 2 km × 2 km
grid over a 1,138 km2 area. Such data distribution is unsuitable for the needs of research like this study. In contrast,
SDMs not only possess high compatibility and strong generalization ability, but also require much less spatial
samples and greater flexibility in the uniformity of input data (Figure 2b).However, previous studies suggested that
theminimum number of sampling points typically required to build a SDM is 10 (Pearson et al., 2007; van Proosdij
et al., 2016). When the sample size is very small (e.g., only one observation point), although the model can predict
similar areas based on environmental variables, the results tend to have high uncertainties, resulting in a limited
practical value. In actual applications, to better capture the relationship between species distribution and envi-
ronmental variables, and to increase prediction reliability, 10 to 30 observation points are generally needed
(Hernandez et al., 2006). It is important to note that this minimum requirement is influenced by various factors,
including the size and environment of study area, the distribution characteristics of species, and the complexity of

Figure 10. Improvements in spatial prediction by incorporating variables into the final models.
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the model. For species with a wide distribution or in larger study areas, more sample points are needed, while
simpler distribution patterns may require fewer data. Additionally, when data are insufficient, model performance
can be enhanced by generating background points or incorporating expert knowledge.

Another key advantage of SDM is its ability to integrate multiple factors. Specifically, SDM can effectively
utilize existing remote sensing data and spatiotemporal continuous map products, such as GIS (Figure 2e), to
establish a comprehensive framework for more accurate predictions. In contrast, Kriging relies exclusively on the
spatial autocorrelation between sample points and cannot incorporate environmental factors (Figure 2f). By
integrating multiple factors, SDM produce predictions that more accurately reflect real‐world conditions, making
them highly applicable to a variety of environmental studies. Building on this strength, our study adopted a multi‐
dimensional factor system to examine the transport and spatial distribution of solutes in shallow groundwater
within arid regions. Taking the example of SDM used for predicting biological distribution, Figure 11a illustrates
the potential range of species distribution under optimal conditions, driven by abiotic factors such as climate and
soil characteristics. However, in reality, their actual distribution is shaped by factors like predators, competitors,
food availability, and movement capacity (Figure 11b). This highlights the importance of incorporating a broader
range of influencing factors into models to improve prediction accuracy. Similarly, just as SDM improves pre-
dictions in ecological studies by considering a wide array of environmental factors, it can also be applied to
groundwater research. For example, the dynamics of SGW solutes are influenced by various natural processes and
human activities (Figure 1), emphasizing the need for a multi‐factor approach. In our study, we analyzed the
relationships among hydrology, environmental conditions, and human systems (Figures 11c and 11d) to predict
the spatial patterns of SGW solutes. This multidimensional approach enabled us to better understand the
mechanisms driving solute dynamics and their interactions with the surrounding environment.

While considering multiple factors is essential, the integration of hydrological connectivity is particularly crucial
in groundwater models. Ignoring interactions between adjacent aquifer units or between surface water and
groundwater in model algorithms can lead to significant deviations from actual solute dynamics (Woodward
et al., 2016). Our approach addressed this gap by incorporating hydrological connectivity as a mechanistic
constraint, improving upon traditional data‐driven interpolation and correlation‐based methods. This ensures that

Figure 11. Conceptual framework showing the integration of enriched predictor variables in the SDM (Species Distribution Model) to enhance spatial accuracy. (a) and
(b) Demonstrate that incorporating additional predictor variables in biological models can bring predictions closer to real‐world distributions. (c) and (d) Show that this
study enhances prediction accuracy by considering factors influencing groundwater solute dynamics.
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predictions better reflect the physical reality of groundwater systems. Moreover, by integrating spatial data to
inform estimates, our method avoids the rigid assumptions and computational demands of fully prescribed
physics‐based models. This approach represents a significant improvement over previous research by specifically
targeting Gap 1 (hydraulic connection) within existing constraints. It is also crucial to accurately define aquifer
boundaries when modeling the physical processes of groundwater solutes (Reilly, 1987; Yao et al., 2015). While
the origin of many lakes in the BJD remains a subject of debate (Wang & Zhou, 2018), our study benefited from
previous research to guide geological surveys and determine potential groundwater flow directions. Additionally,
hydrograph separation was used to quantify water supply between different hydrological units, and the use of
chemical signals in EMMA complemented complex geological and hydrogeological cross‐sectional data.

The dynamics of SGW solutes in arid regions are being influenced by various extrinsic factors, including human
activities, vegetation, climate, and soil conditions (Figure 1). These factors exhibit great spatial heterogeneity,
posing challenges in understanding their impacts on SGW. However, with the advancements in the fields of
remote sensing and GIS (Xie et al., 2024), monitoring the dynamics of these drivers at a large‐scale is now
possible through direct or indirect means. For instance, indicators such as GDP and population density can
provide useful insights into human‐induced overexploitation and pollution of groundwater, particularly in arid
and semi‐arid regions (Mukherjee et al., 2020). In this study, we incorporated as many variables as possible in the
species distribution models from the existing available GIS/RS data products to simulate the environmental layers
(Li et al., 2020). Notably, this study also incorporated soil physical and chemical data, which have been largely
overlooked in previous studies when examining groundwater dynamics.

5.2. Enhanced Mapping Accuracy of Shallow Groundwater Solutes Through SDMs

Spatial monitoring of groundwater chemistry is essential for evaluating and sustainably managing water re-
sources, as well as for understanding hydrogeochemical cycles. Mapping the spatial distributions of groundwater
chemistries helps link these patterns to potential health risks, such as diseases caused by water contamination (Ma
et al., 2022). Traditionally, spatial interpolation methods such as kriging, inverse distance weighting, and
Thiessen polygons have been widely used in groundwater studies. These methods are based on the first law of
geography, which asserts that geographically closer entities tend to exhibit stronger relationships (Tobler, 1970).
However, traditional techniques often overlook key characteristics of groundwater systems, such as hydrological
connectivity, heterogeneous flow paths, and dynamic solute transport. To address these challenges, this study
integrates hydrological connectivity as a mechanistic constraint, offering a novel approach to improving spatial
predictions of groundwater chemistry, especially when data are sparse. While methods like Universal Kriging,
Moving Window Kriging, and geographically weighted regression have been developed to address spatial het-
erogeneity, they still struggle with complex geographical conditions. These methods work well in uniform ter-
rains but tend to yield inaccurate predictions in regions with significant spatial heterogeneity, such as arid areas. In
such regions, the varied topography strongly influences the migration of SGW solutes, rendering traditional
interpolation methods fail to capture the complexities of solute dynamics. To address these challenges, we
employed SDMs, originally developed for ecological applications, to enhance the prediction of groundwater
chemistry distribution. SDMs have demonstrated success across various disciplines, including ecological and
environmental studies (Li et al., 2022).

Unlike traditional interpolation methods, SDMs allow for the incorporation of both natural and anthropogenic
variables, providing more accurate spatial predictions of solute distributions and unveiling new insights into
hydrogeochemical cycles in arid environments. Our results emphasize several key quantitative relationships that
significantly influence the spatial patterns of shallow groundwater solutes. For instance, the predicted spatial
distribution of Ca2+ revealed that “unexploited area” played a critical role in its distribution. This variable was
instrumental in narrowing the predicted range of Ca2+ in the final maps (Figures 8 and 9), demonstrating the
significant impact of land use on geochemical cycling. Similarly, the results for SO4

2− , a key indicator of
groundwater pollution from human activities, revealed that its distribution was primarily driven by population
density (positive correlation), while factors such as precipitation, GST, and soil type (coarse) exhibited negative
correlations. The inclusion of these variables in the final model enabled the identification of new SO4

2− hotspots
in urban areas such as Jiuquan, Jiayuguan, Zhangye, and other regions along the Hexi Corridor (Figure 10),
highlighting the critical role of human activities in driving solute dynamics. Additionally, the predicted ranges for
other solutes, such as Mg2+, K+, Cl− , and HCO3

− , revealed varying spatial patterns influenced by their respective
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predictor variables (Figures 8 and 9). For example, the broader predicted range for Mg2+ and SO4
2− underscores

the impact of geological and anthropogenic factors, while the narrower predicted range for Ca2+, K+, and Cl−

reflects the localized nature of their driving factors. These findings demonstrate the ability of SDMs to capture
intricate variable relationships and highlight the spatial heterogeneity of groundwater chemistry in arid regions.
By integrating these key relationships, our study advances the understanding of groundwater solute dynamics and
highlights the potential of SDMs in identifying the complex interactions among driving factors.

SDMs have demonstrated strong predictive power across diverse research fields, including human emotions (Li
et al., 2021), infectious diseases (Harrigan et al., 2014), municipal planning (Clemente et al., 2019), and heavy
metal pollution (Li et al., 2020). Building on these successes, the modified SDMs employed in this study provide a
novel approach to investigating the spatial distribution and driving mechanisms of solutes in SGW within arid
regions from an ecological perspective. However, the framework presented here has some limitations, particularly
regarding the spatial resolution of available data sets. For instance, while the demonstration region is relatively
large, the coarse resolution of input data—such as soil and land‐use information—may constrain the accuracy of
fine‐scale predictions. Future work should focus on integrating higher‐resolution data sets and exploring the
scalability of this approach to smaller or more heterogeneous regions, which would enhance our understanding of
both spatial and temporal variations in solute dynamics. A key challenge for further development of SDMs in
groundwater prediction lies in the need for predictor variables to be represented in continuous raster format.
Currently, obtaining large‐scale raster data for variables such as hydrogeological conditions, bedrock type,
fracture density, and depth to groundwater is difficult. The inclusion of such hydrological data could significantly
improve the accuracy and predictive capabilities of SDMs.

6. Conclusion
Mapping shallow groundwater solute footprints in arid regions has presented challenges due to its uneven
spatial distributions, complex transport mechanisms, and difficulties in data acquisition. In this study, we
addressed these challenges by proposing a novel approach that integrates SDMs from ecology with traditional
hydrological models, machine learning techniques, remote sensing, and GIS methods. Using this interdisci-
plinary approach, we collected comprehensive predictor variables that encompass both natural processes and
human activities. This novel framework enabled us to predict solute concentrations in groundwater by adapting
the SDMs approach traditionally used in ecology for modeling species suitability. Our findings demonstrated
that incorporating hydraulic connections between the surface layer and deep groundwater across adjacent
catchments significantly improved the accuracy of solute dynamics predictions. Additionally, we observed
negative correlations between Na+, SO4

2− , and Cl− in the SGW and their counterparts in surface water.
Moreover, integrating solute variables into the SDMs facilitated our identification of additional hotspots. For
instance, incorporating parameters such as “unexploited area” narrowed the prediction range for Ca2+, while
“population density” revealed hotspots of SO4

2− in Hexi Corridor. This study highlights the value of combining
conventional hydrological methods with SDMs from an ecological perspective to improve the accuracy of
mapping SGW solutes in large‐scale arid regions. This approach demonstrates transferability to watersheds
with diverse land‐use patterns and groundwater regimes, offering a robust framework for cross‐system water
quality management.

Data Availability Statement
The topography‐only and final maps of shallow groundwater and deep groundwater, their improvements, the
original data set of water chemistry, as well as the related R script in the study are available at Zenodo at https://
zenodo.org/records/12735837.
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