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Abstract

Accurate rice yield prediction remains a major challenge due to the complex and nonlinear
interactions among cultivar, environment, and phenology. Existing approaches often
focus on analyzing individual components while ignoring their interdependencies, which
results in limited predictive accuracy and generalizability. To overcome these problems,
this study proposes a novel interpretable random forest model that integrates cultivar,
environmental, and phenological dimensions. Different from conventional approaches, the
proposed method incorporates a factor-combination optimization strategy to identify the
most effective information for yield estimation. For analysis, 24 key determinants were
screened, including the geographical location, meteorological conditions, phenological
events, and cultivar traits. The RF models were also evaluated when built with seven
factor combinations. The results reveal the following: (1) Meteorological conditions play a
dominant role during the vegetative growth period, including net solar radiation (r = 0.42),
daylength (r = 0.38), and thermal summation (r = 0.29). On the other hand, thermal
summation (r = 0.28), mean minimum temperature (r = −0.23), and mean temperature
(r = −0.20) are most relevant during the reproductive growth period. (2) The full-factor
model achieves optimal performance (RMSE = 601.45 kg/ha and MAE = 454.98 kg/ha,
R2 = 0.77). (3) Importance analysis reveals that meteorological factors provide the greatest
contribution (53.59%), followed by phenological factors (20.39%), geographical factors
(17.20%), and cultivar (8.82%), respectively. The results also reveal that threshold effects
of key determinants on yield, and identify mid-April to early May as the optimal sowing
window. These findings demonstrate that integrating cultivar, environment, and phenology
factors creates a powerful predictive model for rice yields.
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1. Introduction
Rice is one of the world’s most vital staple crops, playing a central role in ensuring

global food security [1]. It provides a primary source of calories and nutrition for billions of
people worldwide. However, the stability and improvement in rice yields are increasingly
threatened by accelerating climate change, more frequent extreme weather events, and the
continual replacement of rice cultivars [2–6]. These challenges create complex risks for
production systems, necessitating more precise and adaptive management strategies to
sustain yield stability amid changing environmental conditions.

Among the many factors influencing rice yield formation, the complex and nonlin-
ear interactions between cultivar genetics, environmental conditions, and phenological
development are especially important. Together, these factors govern the rate and pat-
tern of rice growth, fundamentally determining both rice’s potential yield and actual
outcomes in the field. Key environmental variables, such as temperature patterns, solar
radiation intensity and duration, and water availability—as well as their dynamic temporal
distributions—strongly affect critical developmental stages, including tillering, heading,
flowering, and grain filling [7–12]. For instance, photoperiod length and accumulated
thermal time during crucial growth periods regulate the timing of heading and grain filling,
which are essential to both yield quantity and quality [13–15]. Extreme temperatures,
whether excessively high or low, can severely disrupt panicle formation, impair pollination,
and reduce grain weight and quality, thereby significantly lowering final yield [16–18].

In parallel, genetic diversity among rice cultivars results in considerable variation in
their sensitivity and adaptability to environmental stresses [19]. Early- and late-maturing
varieties often differ markedly in photoperiod sensitivity, optimal temperature ranges,
and developmental duration [20–22]. Early-maturing cultivars tend to have weaker pho-
toperiod sensitivity and are less affected by daylength variations, whereas late-maturing
cultivars generally exhibit stronger photoperiodic responses—with short days encouraging
heading, and long days delaying it. Achieving optimal alignment between genotype and
environment is therefore critical; the precise control of phenological development enables
sensitive growth stages to coincide with favorable climatic windows, maximizing yield
and stability.

Despite decades of research on rice yield prediction, current methodologies continue
to face significant limitations. Traditional statistical models, often relying on historical
datasets and employing univariate or simple multivariate regression techniques, struggle
to capture the complex, nonlinear interactions inherent in crop growth systems [23–25]. Fur-
thermore, these models lack robustness when applied to new or changing environmental
conditions. Process-based mechanistic crop models offer greater biological interpretabil-
ity by simulating key physiological processes, such as photosynthesis, respiration, and
assimilate partitioning [26–30]. However, these models encounter challenges, including
difficulties in accurately calibrating parameters across diverse regions, high sensitivity to
uncertain inputs, limited ability to integrate heterogeneous data sources, and constraints in
adapting to new cultivars or evolving management practices [31–34]. Importantly, many
existing approaches tend to overlook the intricate interactions among cultivar genetics,
environment, and crop management that are critical for comprehensive yield prediction. In
particular, the dynamic coupling between cultivar-dependent management practices and
their yield-regulating mechanisms has received little attention.

To address these challenges, this study proposes an interpretable, data-driven model-
ing framework for rice yield prediction that systematically integrates multidimensional
factors. Leveraging a rich observational dataset covering 2175 rice cultivars tested across 327
field trial sites in China’s major rice-producing regions from 2007 to 2018, this study incorpo-
rates 47 variables spanning meteorological, geographical, phenological, and cultivar-related
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categories. The specific objectives are to (1) identify the key determinants of rice yield
formation using multiple factors and thoroughly investigating the differentiated response
mechanisms of rice yield to various factors; (2) develop seven random forest regression
models with different feature combinations to evaluate predictive performance and de-
termine the optimal model; and (3) quantitatively assess the contribution of each input
variable to predictive accuracy and elucidate the marginal effects of these variables. These
findings provide a scientifically grounded foundation for precision agriculture, resource
optimization, and the development of climate-resilient cultivation practices. Ultimately,
this integrative approach advances the mechanistic understanding of rice yield formation
and supports efforts to enhance yield stability and food security in the face of increasing
climate variability and environmental challenges.

2. Materials and Methods
2.1. Study Area and Data Sources

The study area encompasses China’s rice cultivation regions, with trial sites dis-
tributed as shown in Figure 1. These sites span six major rice-producing zones across China,
characterized by pronounced heterogeneity in edaphoclimatic conditions, socioeconomic
conditions, and rice cultivation systems. Those zones are the South China double-season
rice region, Central China mixed single-season and double-season rice region, Southwest
Plateau mixed single-season and double-season rice region, North China single-season rice
region, Northeast single-season rice region, and Northwest arid single-season rice region.
The study area domain extends latitudinally from 19◦09′ N to 46◦40′ N and longitudinally
from 80◦07′ E to 130◦30′ E, with elevational gradients ranging from 1 to 1318 m. This
extensive geographical expanse encompasses diverse climatic conditions spanning tropi-
cal, subtropical, and temperate bioclimatic zones. During the main rice growing season
(March–November), a significant spatiotemporal fluctuation in meteorological conditions
is observed. The climate conditions across the study area are highly heterogeneous, with
multi-year daily mean temperature, daily maximum temperature, and daily minimum
temperature during the growing season at all trial sites varying from 9.0 ◦C to 27.1 ◦C,
13.8 ◦C to 29.7 ◦C, and 4.6 ◦C to 25.3 ◦C, respectively; accumulated rainfall varying from
25 mm to 2812 mm; average daily relative humidity varying from 26.82% to 84.15%; and
accumulated net solar radiation varying from 2482 MJ·m−2·d−1 to 4622 MJ·m−2·d−1.

Figure 1. The study area and the distribution of sites for rice cultivar trials.
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2.1.1. Rice Cultivar Trials Data

(1) Data source

The rice cultivar trials data in this study are obtained from the “China Rice New
Cultivar Trials” series published by China Agricultural Science and Technology Press [35].
The series of authoritative publications comprehensively document regional production
and field plot trials of rice cultivars across China from 2007 to 2018. Field plot trials are
conducted at representative sites within specific ecological zones that reflect local edaphic
conditions, climatic patterns, agronomic practices, and productivity levels to evaluate
varietal adaptability. These plot trials are conducted in a completely randomized block
design with triplicate repetitions for each cultivar on 13.33 m2. Regional production trials,
conducted as a secondary evaluation phase, verify the yield performance of field plot trials.
These production trials utilize randomized field arrangements without repetition for each
hybrid cultivar on approximately 333.34 m2. Each volume in these books provides detailed
documentation, including geographical location, participating germplasm (cultivar, male
and female parents), phenological date, phenotypic traits, disease resistance, yield, and
cultivar traits for each trial.

This study collected data on 2175 rice cultivars with a total of 46,293 observations at
327 locations from 2007 to 2018. The data include the geographic location of trial sites, such
as longitude, latitude, and elevation; yield and yield components, such as the number of
effective panicles per unit area (EPPA), total number of grains per panicle (TGPP), filled
grains per panicle (FGPP), seed-setting rate (SSR), and thousand-grain weight (TGW);
phenology, such as sowing date, transplanting date, heading date, and maturation date;
and cultivar traits, such as plant height (PH) and panicle length (PL). The results with
large errors and affected by natural disasters, pests, and diseases are not included in the
statistical summary to ensure data accuracy and reliability. All variable abbreviations and
descriptions can be found in Table A1.

(2) The data distribution of rice cultivar trials

According to observation records, the dates of the occurrence of the same phenological
event at different trial sites vary significantly. Specifically, sowing occurs between February
and July, heading occurs between April and October, and maturation occurs between May
and November. The day of year for sowing date (DOY_Sow) ranges from day 33 to 207
(mean = 119.6 ± 34.7 days), the day of year for heading date (DOY_Hea) ranges from day
114 to 293 (mean = 220.5 ± 28.3 days), and the day of year for maturation date (DOY_Mat)
ranges from day 142 to 331 (mean = 256.2 ± 31.9 days). The entire development period
(GP) from sowing to maturation averages 137.6 ± 17.3 days (range: 89–194 days), with the
vegetative growth period (VGP) from sowing to heading averaging 100.9 ± 16.0 days, and the
reproductive growth period (RGP) from heading to maturation averaging 36.7 ± 6.8 days.

Statistics show that among 46,293 samples, the yield data are complete, but there are
some missing data on seven cultivar-related traits. Missing data rate ranges from 11.48%
to 13.53% across seven traits, with 88.19% of samples having complete data for all traits.
Figure 2 provides the violin plots to show a visual representation of the data distribu-
tion of rice cultivar trials (Table A2 provides the statistical distribution for all variables
incorporated in the model development). Rice yield averages 8664.00 ± 1290.00 kg/ha
(range: 5162.55–1.22 × 104 kg/ha), demonstrating significant variability. Among yield
components, EPPA averages 258.30 ± 55.2 × 104 per ha (range: 118.50–838.50 × 104 per
ha), TGPP averages 170.8 ± 41.1 (range: 51.6–518.8 gains per panicle), and FGPP aver-
ages 138.5 ± 33.0 (range: 20.8–369.8 gains per panicle). The SSR averages 81.26 ± 8.24%
(range: 19.00–100%), while TGW averages 27.03 ± 2.94 g (range: 16.20–38.70 g). For other traits,
PH averages 112.56 ± 14.02 cm (range: 18.00–202.00 cm), and PL averages 23.70 ± 2.93 cm
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(range: 11.20–38.00 cm). This dataset provides a comprehensive foundation for exploring the
relationships between phenological development, cultivar traits, and yield formation across
diverse cultivars and growing conditions.

Figure 2. Visualization of the variable distribution in rice cultivar trials dataset. Variables are
categorized and indicated by different colors—blue (geographical factors), green (phenological
factors), and orange (cultivar traits).

2.1.2. Meteorological Data

The meteorological data matching the new Chinese rice cultivar trials is collected from
the ERA5-Land (https://cds.climate.copernicus.eu/datasets (accessed on 19 September
2025)) dataset, which is a high-resolution global atmospheric reanalysis dataset developed
and maintained by the European Centre for Medium-Range Weather Forecasts (ECMWF),
providing continuous, consistent, and high-quality data for various meteorological vari-
ables. This study extracts daily meteorological data from 2007 to 2018 according to the
latitude and longitude of trial sites. Then, the units of each meteorological variable are
converted to determine the daily minimum temperature (TMin, ◦C), daily maximum tem-
perature (TMax, ◦C), daily mean temperature (TMean, ◦C), daily precipitation (PRE, mm),
daily relative humidity (RH, %), and daily net solar radiation (Rns, MJ·m−2·d−1). The
daylength (DL, h) for a specific location and date was calculated based on longitude, lati-
tude, and the day of year [36]. The thermal summation during the developmental period is
also calculated, such as ≥8 ◦C thermal summation (TS, ◦C d). For the entire development
period, a series of meteorological stress indicators are calculated, including the frequency
of high-temperature events (3 consecutive days with daily average temperature ≥ 30 ◦C,
HN), total days with high-temperature events (HD), accumulated heat of HD (HDD), the
frequency of cold damage events (daily mean temperature ≤ 17 ◦C above 36◦ N or below
20 ◦C below 36◦ N for consecutive 3 days, CN), total days with cold-damage events (CD),
accumulated cold of CD (CDD, ◦C d), and total days with high-heat and high-humidity
(daily average temperature ≥ 25.0 ◦C and relative humidity ≥ 90.0%, HHD). All variable
abbreviations and descriptions can be found in Table A1.

https://cds.climate.copernicus.eu/datasets
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2.2. Research Methods
2.2.1. Descriptive Statistical Analysis

Descriptive statistical analysis is used to summarize the essential features of a dataset,
capturing both its center and its spread. The mean pinpoints central tendency, while the
standard deviation (Std) quantifies dispersion. The mean is the average of all samples in a
dataset, calculated as

Mean =
1
n∑n

i=1 xi (1)

where xi is the i-th value of the variable in the dataset, and n is the sample size of the
variable in the dataset.

Standard deviation (Std) measures the dispersion of variable values in a dataset,
representing the average deviation of each variable value from its mean, calculated as

Std =

√
1
n∑n

i=1 (xi − Mean)2 (2)

2.2.2. Correlation Analysis

Spearman’s rank correlation coefficient is used to measure the monotonic relationship
between two variables, which is a nonparametric statistical method. It calculates correlation
by converting original data to ranks (positions after sorting), does not depend on the
distribution form of the data, and can effectively handle nonlinear relationships or non-
normally distributed data. Since not all variables follow normal distributions, Spearman’s
rank correlation coefficient is leveraged to evaluate the correlation between yield and each
influencing variable and generate correlation matrix heatmaps and data distribution plots.
The Spearman correlation coefficient is calculated as

r = 1 −
6∑n

i=1 d2
i

n(n2 − 1)
(3)

where di is the rank difference of each pair of statistical values, and n is the sample size of
the statistical variables.

2.2.3. Model Evaluation Methods

Three statistical indicators are used to evaluate model accuracy, including mean
absolute error (MAE, Equation (4)), root mean square error (RMSE, Equation (5)), and
coefficient of determination (R2, Equation (6)). The closer MAE and RMSE are to 0, the
smaller the error; the closer R2 is to 1, the better the model fit.

The calculation methods for MAE, RMSE, and R2 are as follows:

MAE = ∑n
i=1 |Si − oi|/n (4)

RMSE =

√
(

1
n∑n

i=1 (Si − Oi)) (5)

R2 =

(
n
∑

i=1
(Si − S)(Oi − O))

2

n
∑

i−1
(Si − S)2 n

∑
i=1

(Oi − O)
2

(6)

where Oi is the i-th observed value, Si is the i-th predicted value, n is the sample size of the
observed variables, Ō is the mean of observed values, and S is the mean of predicted values.
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2.2.4. Development of a Random Forest-Based Yield Prediction Model

The random forest regression algorithm, as a powerful nonparametric statistical
method, is used to handle complex nonlinear relationships of multidimensional data to
predict crop yields. In the data preprocessing phase, the interquartile range (IQR) method
is utilized to identify and remove yield outliers, specifically eliminating values below
Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR to ensure dataset integrity and reliability.
Additionally, the 2175 rice cultivars are categorical variables (fields) rather than quantitative
variables (numerical values). To enable the model to properly handle this categorical
feature within the analytical framework, each cultivar is encoded with a unique identifier.
The approach allows the model to capture cultivar-specific effects without imposing any
numerical ordering or relationship between different cultivars.

When selecting feature variables for random forest input, this study covers geographic
location information, phenological factors, meteorological factors, and cultivar traits. Then,
the min–max normalization method is used to standardize feature variables, making the
data distribution of each feature on the same scale. This processing not only helps improve
model convergence speed but also avoids adverse effects on model weight allocation
caused by large differences in different feature scales. To evaluate the impact of different
feature combinations on crop yield prediction accuracy, the proposed method designs a
series of experiments, gradually adding variables. Crop yield consistently serves as the
target variable throughout all experiments. The specific steps are as follows:

First, the method conducts single-dimension feature experiments: the first experiment
uses only geographical location (Loc) as the input feature, the second employs only a
phenological factor (Phen), and the third isolates the meteorological factor (Meteo). Next,
two-dimensional feature combinations are progressed: the fourth integrates Phen with
Meteo, while the fifth combines Loc with Meteo. Then, the paper advances to three-
dimensional feature integration in the sixth experiment, incorporating Loc, Phen, and
Meteo simultaneously. Finally, a comprehensive multi-dimensional analysis in the seventh
experiment is implemented by introducing cultivar traits, using the full set of features—Loc,
Phen, Meteo, and cultivar traits (please refer to Table A1 for the specific variables of the
input models).

For each model, the method optimizes random forest regressor hyperparameters
using grid search with five-fold cross-validation. The hyperparameters include tree count,
maximum depth, minimum samples for node splitting, minimum samples in leaf nodes,
and maximum feature count. The coefficient of determination (R2) is used to determine the
optimal parameter combination, ensuring optimal model performance.

In both model training and evaluation phases, this study employs a training–testing
split method with 100 iterations and implements parallel computing to improve efficiency.
In each iteration, the dataset is stratified by geographical coordinates (Lon and Lat) and
randomly divided into an 80% training set and a 20% testing set. This stratification ensures
balanced geographical distribution between sets, reducing risks of overfitting or underfit-
ting due to geographical disparities. During each training–testing process, RMSE, MAE,
and R2 are recorded to assess model accuracy and generalization capability.

The result is ultimately presented as the mean performance metrics across all 100 itera-
tions for both training and testing sets. These statistics can demonstrate the random forest
regression model’s stability and reliability in crop yield prediction, providing a foundation
for agricultural decision making and yield prediction research.

The workflow of the proposed methods and the data and models used in this study
are shown in Figure 3.
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Figure 3. The workflow of the proposed method. Refer to Table A1 for the specific variables of the
input models.

3. Results
3.1. Correlation Analysis Between Influencing Factors and Rice Yield
3.1.1. The Correlation Between Geography, Phenology, and Rice Yield

The influence of trial geographic location, key phenological dates, and the durations
of different development periods on rice yield is comprehensively considered. Geographic
location information includes longitude (Lon), latitude (Lat), and elevation (Elev); pheno-
logical factors include DOY_Sow, DOY_Hea, VGP, RGP, and GP. The relationships between
these variables and yield are shown in Figure 4a.
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Figure 4. Correlation analysis between influencing factors and rice yield. Panels show correlations
of (a) geographical location, phenology, and yield; (b) meteorological factors during the whole
growth period (GP); (c) meteorological stress indicators during GP; (d) meteorological factors during
the vegetative growth phase (VGP); (e) meteorological factors during the reproductive growth
phase (RGP); and (f) cultivar traits. Diagonal plots present histograms and kernel density estimates.
Variables include location (Lon, Lat, and Elev), phenology (DOY_Sow, DOY_Hea, VGP, RGP, and
GP), meteorological factors (TMin, TMax, TMean, PRE, RHU, Rns, DL, and TS), stress indicators (HN,
HD, HDD, CN, CD, CDD, and HHD), and cultivar traits (EPPA, TGPP, FGPP, SSR, TGW, PH, and
PL). The dashed lines represent the fitting lines of the data points. All variable abbreviations and
descriptions can be found in Table A1.

Lat and Elev have significant linear correlations with rice yield, with correlation coeffi-
cients of 0.25 and 0.18, respectively. The correlation between yield and Lon is weaker, at
−0.07. VGP, RGP, and GP are significantly positively correlated with yield, with correlation
coefficients of 0.37, 0.33, and 0.45, respectively. The linear correlations between yield and
DOY_Sow and DOY_Hea are both weak, with correlation coefficients of 0.02 and 0.08,
respectively. But according to the regression plots in the upper triangle, DOY_Sow and
DOY_Hea have significant nonlinear relationships with yield.

The correlation analysis between independent variables indicates that there is an
interaction effect among the variables. Lon and Elev are significantly negatively correlated
(r = −0.78, p < 0.01). Lat has significant positive correlations with the durations of devel-
opment periods, with correlation coefficients with VGP, RGP, and GP of 0.22, 0.26, and
0.31, respectively. DOY_Sow and DOY_Hea are significantly influenced by Elev and Lon,
with significant negative correlations with Elev (DOY_Sow, r = −0.41; DOY_Hea, r = −0.26;
p < 0.01) and significant positive correlations with Lon (DOY_Sow, r = 0.50; DOY_Hea,
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r = 0.32; p < 0.01). The durations of development periods are significantly influenced by
the geographic location of trial sites, with VGP, RGP, and GP lengthening with increasing
Lat and Elev; they are also influenced by DOY_Sow and DOY_Hea. VGP and GP tend
to shorten with delayed sowing date and heading date, and RGP tends to lengthen with
delayed sowing date and heading date.

3.1.2. The Correlation Between Rice Yield and Meteorology During Different
Development Periods

The impact of varying meteorological conditions on rice development processes and
ultimate yield shows significant variability. Therefore, this work separately analyzes
the relationships between meteorological factors and yield during different development
periods, as shown in Figure 4b–e.

Throughout the development period, rice yield shows strong positive correlations with
key meteorological factors: net solar radiation (SRns, r = 0.46), ≥8 ◦C thermal summation
(STS, r = 0.30), daylength (SDL, r = 0.26), and accumulated precipitation (SPRE, r = 0.14).

In contrast, temperature-related variables—mean minimum temperature (STMin),
mean temperature (STMean), and mean maximum temperature (STMax)—exert weaker
effects, with absolute correlations staying below 0.13. These temperature variables are
negatively correlated with moisture indicators (SPRE and SRHU), with coefficients rang-
ing from −0.23 to −0.44; SRHU and SRns also display a moderate negative relationship
(r = −0.36). These patterns reveal complex interactions among meteorological factors that
jointly shape the growing environment while exerting both independent and combined in-
fluences on yield. Furthermore, high-temperature heat damage (HN, HD), low-temperature
cold damage (CN, CD), and hot-humid conditions (HHD) occur only rarely across the
entire period (Figure 4c). Excluding HHD, HN, HD, CN, and CD are characterized by
limited data, scattered distributions, and weak correlations with yield (|r| ≤ 0.02).

During VGP, rice yield correlates most strongly with net solar radiation (VGP_Rns),
daylength (VGP_DL), ≥8 ◦C thermal summation (VGP_TS), and accumulated precipi-
tation (VGP_PRE), with correlation coefficients of 0.42, 0.38, 0.29, and 0.17, respectively.
Temperature variables (VGP_TMean, VGP_TMax, and VGP_TMin) exhibit weak negative
correlations with yield (−0.08 ≤ r < 0). In contrast, during RGP, yield is influenced primar-
ily by net solar radiation (RGP_Rns, r = 0.28), mean minimum temperature (RGP_TMin,
r = −0.23), mean temperature (RGP_TMean, r = −0.20), mean maximum temperature
(RGP_TMax, r = −0.18), and ≥8 ◦C thermal summation (RGP_TS, r = 0.18). Accumulated
precipitation (RGP_PRE) and mean relative humidity (RGP_RHU) show comparatively
weaker associations with final yield.

Taken together, no single meteorological variable fully explains yield variation. The
interactions among multiple environmental factors must be considered. During VGP,
VGP_Rns, VGP_TS, VGP_DL, and VGP_PRE exert the strongest effects; during RGP, yield
is more related to RGP_Rns, RGP_TMin, and RGP_TMean. Across the entire development
period, HHD also negatively affects yield. Consequently, the developmental period is
partitioned into two distinct phases: VGP and RGP. All meteorological variables except
VGP_RHU are adopted as model inputs, and among the stress indicators, only HHD
is selected.

3.1.3. The Correlation Between Cultivar Traits and Rice Yield

This study examines the relationships between rice yield and cultivar traits, as shown
in Figure 4f. FGPP and TGPP exhibit strong positive correlation with yield (FGPP, r = 0.51;
TGPP, r = 0.45) and are themselves highly intercorrelated (r = 0.90). PH and PL also correlate
positively with yield (r = 0.37 and r = 0.27, respectively). And the cultivar itself displays a
positive association with yield (r = 0.27). In contrast, TGW, SSR, and EPPA exhibit weaker
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correlations with yield (r = 0.16, r = 0.14, and r = −0.08, respectively). Importantly, yield
components are subject to mutual constraints: TGW is negatively correlated with EPPA
(r = −0.31), and TGPP is negatively correlated with SSR (r = −0.21). Further analysis reveals
that cultivar is positively correlated with both TGPP and FGPP (r > 0.2), underscoring the
role of genetic factors in panicle development. TGPP and FGPP also correlate strongly with
PH and PL (r ≈ 0.5), indicating that taller plants with longer panicles tend to produce more
grains—traits governed by cultivar genetics. Conversely, EPPA is negatively correlated
with TGPP and FGPP (r = −0.57 and r = −0.59, respectively), suggesting that excessive
tillering can reduce grains per panicle and potentially limit economic yield.

Rice phenotypic traits are strongly influenced by meteorological conditions (Table 1).
Temperatures (VGP_TMean, VGP_TMax, and VGP_TMin) during the vegetative growth
period can promote EPPA and PH (0.14 ≤ r ≤ 0.17), but reduce TGW (−0.26 ≤ r ≤ −0.24).
Precipitation in the vegetative growth period decreases EPPA (r = −0.24), but increases
TGPP, FGPP, and TGW (0.13 ≤ r ≤ 0.19). TS during vegetative and reproductive growth
periods positively affects TGPP, FGPP, PH, and PL (0.17 ≤ r ≤ 0.47). DL during the
vegetative growth period positively affects TGPP, FGPP, PH, and PL (0.26 ≤ r ≤ 0.50). Rns
during vegetative and reproductive growth periods also shows significant positive effects
on most cultivar traits (0.04 ≤ r ≤ 0.35), except that Rns during the vegetative growth
period has negative effects on EPPA (r = −0.26) and SSR (−0.04).

Table 1. The correlation between cultivar traits and meteorological factors.

EPPA TGPP FGPP SSR TGW PH PL

VGP_TMean 0.16 0.02 0.00 −0.07 −0.25 0.17 0.01
VGP_TMax 0.17 0.01 −0.02 −0.08 −0.24 0.16 0.01
VGP_TMin 0.14 0.03 0.00 −0.08 −0.26 0.14 0.00

VGP_TS −0.21 0.36 0.31 −0.11 0.07 0.47 0.33
VGP_PRE −0.24 0.18 0.19 0.01 0.13 0.11 0.14
VGP_RHU −0.07 0.05 0.07 0.04 −0.09 −0.03 −0.02
VGP_DL −0.18 0.30 0.34 0.08 0.06 0.50 0.26
VGP_Rns −0.26 0.31 0.28 −0.04 0.32 0.35 0.34

RGP_TMean - - −0.02 0.12 −0.06 0.08 0.07
RGP_TMax - - −0.01 0.12 −0.06 0.09 0.08
RGP_TMin - - −0.04 0.10 −0.08 0.06 0.05

RGP_TS - - 0.32 0.11 −0.10 0.30 0.17
RGP_PRE - - 0.03 −0.07 0.05 −0.02 0.02
RGP_RHU - - −0.04 −0.07 0.07 −0.02 0.00
RGP_DL - - −0.06 0.14 0.08 −0.03 0.00
RGP_Rns - - 0.26 0.16 0.04 0.15 0.10

EPPA (number of effective panicles per unit area), TGPP (total number of grains per panicle), FGPP (filled grains
per panicle), SSR (seed-setting rate), TGW (thousand-grain weight), PH (plant height), and PL (panicle length).
EPPA and TGPP are determined before the heading stage and are not influenced by meteorological factors after
the heading.

3.2. The Performance Comparison of Random Forest Model Based on Seven Different Feature
Combinations

Figure 5 presents the performance of random forest yield prediction models for differ-
ent input feature sets, using three metrics: root mean square error (RMSE), mean absolute
error (MAE), and the coefficient of determination (R2). To ensure reliable evaluation, the
dataset is randomly split 100 times for each feature set, and the mean across the 100 itera-
tions is reported as the final performance estimate.
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Figure 5. The average performance of the random forest regression model after 100 iterations based
on different combinations of input variables. (a) Root mean square error (RMSE), (b) mean absolute
error (MAE), and (c) coefficient of determination (R2).

The RMSE (Figure 5a) and MAE (Figure 5b) reveal that models relying solely on
geographical location (Loc) or phenological factors (Phen) generate large prediction er-
rors, with RMSE > 845.10 kg/ha and MAE > 649.20 kg/ha. Relying exclusively on geo-
graphic location features (Loc), prediction error is particularly pronounced, with RMSE
at 863.10 kg/ha and MAE at 672.75 kg/ha. Phen alone lowers the errors, but they remain
high. Incorporating meteorological factors (Meteo) in the combined sets (Phen + Meteo, Loc
+ Meteo, and Loc + Phen + Meteo) markedly reduces both metrics, with RMSE values of
618.15–629.70 kg/ha and MAE values of 467.40–475.20 kg/ha. When all variables (All) are
included—i.e., adding cultivar information to Loc, Phen, and Meteo—RMSE and MAE fall
to 607.80 kg/ha and 456.75 kg/ha, respectively. Overall, integrating multiple features, espe-
cially Meteo, substantially lowers prediction error, and the inclusion of cultivar information
provides further accuracy.

From the coefficient of determination (R2, Figure 5c) perspective, different feature
combinations show markedly different explanatory powers. Using only geographical
variables (Loc), R2 reaches 0.52, indicating weak independent predictive capacity. When
only meteorological variables (Meteo) are used, R2 significantly increases, approaching 0.75.
With each addition of input variables, R2 increases progressively. The combinations Loc
+ Meteo, Phen + Meteo, and Loc + Phen + Meteo all achieve R2 ≥ 0.75, providing robust
predictions of rice yield variation. Including all variables (All) pushes R2 to its maximum
of 0.77. This shows that adding cultivar information to climate and phenological factors
enhances overall accuracy and stability, yet cultivar data alone can lead to inaccurate yield
estimates in large-scale predictions.

3.3. The Analysis of the Contribution of Feature Variables Based on the Optimal Model

Using the random forest model, rice yield is predicted from all features—geographic
location (Loc), phenological factors (Phe), meteorological factors (Meteo), and cultivar char-
acteristics (Cultivar). The model uses optimal parameters: maximum depth = 20, feature
selection via the square root of the total number of features, minimum samples per leaf = 4,
minimum samples to split = 10, 300 trees, and bootstrap = True. After 100 random splits, the
best-performing run is displayed in Figure 6. On the training set, the model explains 89% of
the variance, with RMSE = 407.39 kg/ha and MAE = 303.96 kg/ha. On the test set, it explains
77% of the variance, with RMSE = 601.45 kg/ha and MAE = 454.98 kg/ha.
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Figure 6. Model explainability of random forest regression model in train set (a) and test set (b).

Figure 7 presents the relative importance of yield-influencing features based on op-
timal parameters and the best full-factor model (the importance of each variable in all
models can be referred to in the Table A3). Environmental variables account for the largest
proportion (53.59%), followed by phenological variables (20.39%), geographic location
variables (17.20%), and cultivar (8.82%). Among individual predictors, rice cultivar itself
emerges as the single most critical factor. During VGP, daylength (VGP_DL, 8.07%) and
net solar radiation (VGP_Rns, 6.69%) play significant roles in the process of yield forma-
tion. Additionally, key phenology events, including sowing date (DOY_Sow, 5.81%) and
heading date (DOY_Hea, 6.55%), make substantial contributions to yield. Geographic
characteristics such as elevation (Elev, 7.65%), latitude (Lat, 5.93%), and longitude (Lon,
3.64%) also demonstrate high importance. A closer look at meteorological variables across
development periods reveals distinct requirements: during VGP, maximum temperature
(VGP_TMax, 3.62%), accumulated precipitation (VGP_PRE, 3.30%), average temperature
(VGP_TMean, 3.30%), and minimum temperature (VGP_TMin, 3.21%) demonstrate sig-
nificant importance. In contrast, during RGP, minimum temperature (RGP_TMin, 3.09%)
emerges as particularly important for yield prediction. These findings indicate that rice has
different meteorological requirements during VGP and RGP. During the VGP, rice requires
more sunlight and solar radiation, while during the RGP, yield is mainly affected by low
temperatures. Overall, yield is governed by the integrated effects of cultivar, sowing date,
meteorological conditions, and geographic factors. Cultivar exerts the strongest individual
effect, while the sowing date interacts with meteorological variables to shape the final yield.

Figure 7. Relative importance of different input variables, including elevation (Elev), latitude (Lat),
longitude (Lon), DOY_Sow (the day of year for sowing date), DOY_Hea (the day of year for heading
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date), VGP (the vegetative growth period), RGP (the reproductive growth period), minimum tempera-
ture (TMin), maximum temperature (TMax), average temperature (TMean), accumulated precipitation
(PRE), relative humidity (RHU), net solar radiation (Rns), daylength (DL), ≥8 ◦C thermal summation
(TS), and total days of high heat and high humidity (HHD).

Partial dependence plots reveal that multiple features affect rice yield through nonlinear
mechanisms (Figure 8). Cultivar, Elev, VGP, RGP, VGP_Rns, and VGP_TS exhibit threshold
effects, with stepwise yield shifts occurring at critical values. Latitude and longitude capture
spatial yield variation across cultivation regions. Sowing date (DOY_Sow) and heading date
(DOY_Hea) display pronounced seasonal influences, defining distinct optimal windows: the
ideal sowing date falls between days 109 and 125 (mid-April to early May), and the optimal
heading date spans days 189–246 (early July to early September). VGP_DL exerts a significant
nonlinear positive effect; within the 14–14.7 h range, and each incremental increase in daylength
steadily raises yield. Conversely, RGP_DL values above 13.7 h are associated with yield decline.

Figure 8. Partial dependence plots based on the importance of variables. Elev (elevation, m), Lat (latitude,
◦N), Lon (longitude, ◦E), DOY_Sow (the day of year for sowing date), DOY_Hea (the day of year for
heading date), VGP (the vegetative growth period, days), RGP (the reproductive growth period, days),
TMin (minimum temperature, ◦C), TMax (maximum temperature, ◦C), TMean (average temperature, ◦C),
PRE (accumulated precipitation, mm), RHU (relative humidity, %), Rns (net solar radiation, MJ·m−2·d−1),
DL (daylength, h), TS (≥8 ◦C thermal summation, ◦C d), and HHD (total days of high heat and high
humidity, days). Cultivar represents the classification identifier and shows the impact on the yield. The
major tick marks indicate coordinate values, while the minor tick marks represent data points.



Agronomy 2025, 15, 2273 15 of 27

4. Discussion
4.1. The Interaction Between Environment, Phenological Development, and Cultivar on Rice Yield

Based on multi-year trial data from China’s rice-cultivation regions, this study reveals
that rice yield exhibits significant differences across different cultivation site-years, mainly
influenced by the interaction between geographic location (such as latitude and elevation),
meteorological conditions, management measures (such as adjustment of sowing date),
phenological development, and cultivar genetic traits.

Friedman’s H-statistic was employed to quantify interaction strengths between vari-
able groups in the random forest model, revealing complex interaction patterns among
variable categories in rice yield formation. The cultivar–phenology interaction emerged as
the most significant (H2 = 0.77), demonstrating that rice varieties respond distinctively to
different sowing dates and growth cycle durations. This finding emphasizes the importance
of targeted variety breeding for specific planting seasons and growth cycle requirements.
The cultivar–environment interaction followed in significance (H2 = 0.56), highlighting
variations in environmental adaptability across varieties and underscoring the necessity for
regionalized variety distribution based on local environmental conditions [37]. Similarly
important was the environment–phenology interaction (H2 = 0.53), which illustrated how
environmental factors substantially influence rice growth and developmental processes,
suggesting that sowing dates and growth stage management should be tailored to local cli-
mate conditions [38]. The three-dimensional interaction among cultivar, environment, and
phenology exhibited moderate strength (H2 = 0.25). This represents the additional influence
generated by the combined effect of all three factors beyond their two-dimensional inter-
actions, indicating that incorporating these complex three-factor interactions can further
enhance prediction accuracy in rice yield models.

The results of this study reveal complex spatial patterns across China. Latitude effects
show yield increases from 19◦ N to peaks around 28–37◦ N, corresponding to China’s rice
cultivation zones from tropical and subtropical regions to the productive Middle–Lower
Yangtze River areas. Longitude effects display yield fluctuations between 97 and 115◦ E
and stability between 115 and 130◦ E, reflecting west-to-east transitions from mountainous
southwestern regions to traditional rice-producing central provinces and eastern coastal
areas. Wang et al. (2021) [39] also point out that due to different light–temperature
conditions across the Yangtze River Basin, rice development period, crop economic traits,
and yield from the upper reaches to the middle and lower reaches of the Yangtze River
exhibit significant geographic variations. The apparent yield spike at 450 m elevation
represents the optimal ecological niche formed at medium elevations (450–510 m) in the
central mountainous transition zone, where moderate elevation combines with suitable
latitude (27–32◦ N) to create ideal growing conditions. These non-monotonic patterns reflect
China’s complex geographic–ecological systems, where coordinates indirectly capture
regional differences in climate, topography, rice varieties, and cultivation practices that
collectively determine yield potential.

Consequently, geographic location not only encapsulates local climate information
but also implies site-specific management strategies. The research results confirm that in
high-latitude and high-elevation areas, adjusting the sowing date can improve climate
conditions and regulate the process of development to enhance the yield. Because the
higher the altitude, the worse the heat conditions will be, and the earlier the sowing date
needs to be set to ensure the maturation [40]. Similarly, latitude influences grain weight and
yield by altering temperature and solar radiation [41]. Regional environment variations
will inevitably affect the genetic traits and crop yield. Among these factors, environmental
conditions play a dominant role in driving yield variability, whereas the cultivar genotype
establishes the potential yield ceiling; the actual yield outcome is ultimately governed by
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the interaction between genotype and environment [42]. Thus, it is necessary to adopt
adaptive management strategies across geographical gradients and climate zones. By
employing environment similarity-based clustering approaches [43], agroecological zones
with analogous climatic and geographical conditions are delineated. Subsequently, tailored
adjustments to cultivation strategies—aligned with the environmental profiles of each
distinct zone—are implemented, coupled with targeted cultivar selection (emphasizing
stress tolerance and growth characteristics) to maximize regional production potential.

Phenological development also has a significant impact on rice yield. The research
results indicate significant positive effects of VGP, RGP, and GP on yield, indicating that
longer development periods favored dry matter accumulation and final yield formation.
This finding is consistent with Wang et al. (2025) [44], who report that advancing sowing
dates for single-season and early-season rice and delaying sowing for late-season rice
extend their respective development periods and enhance potential yield. In this study,
sowing date and heading date have shown weak linear correlations with yield, but exhib-
ited nonlinear relationships, with heading date primarily driven by sowing date (Figures 4
and 8). These discoveries reveal a nonlinear saturation relationship between developmental
duration and yield. Within the optimal sowing window, prolonging both vegetative and
reproductive growth phases substantially enhances yield; conversely, sowing outside this
window reduces the benefit through photo-thermal constraints. It should be noted that
meteorological factors at different development periods have significant differences in their
effects on yield. During VGP, net solar radiation, daylength, ≥8 ◦C thermal accumulation,
and accumulated precipitation show positive correlations with yield, indicating that sun-
light and temperature during this stage are critical for rice growth. In contrast, during RGP,
daily minimum temperature, daily average temperature, and daily maximum temperature
are significantly negatively correlated with yield. Especially, low temperature directly
affects rice grain filling. These findings align with the views of Ma et al. (2025) [45], who
demonstrate that low-temperature stress during grain filling markedly reduces seed-set
rate, thousand-grain weight, and final yield, with the magnitude of decline intensifying as
the duration of low-temperature stress increases.

The result of this study shows that rice cultivar is the most important factor affecting
yield, with differences in its genetic characteristics playing a decisive role. In addition,
genetic variations between rice cultivars can result in major differences in plant architecture,
as research shows that even minor changes to the genetic makeup of rice can significantly
change plant height, tillering characteristics, and productivity components [46]. This genetic
basis for yield variation is clearly demonstrated in our findings, where cultivar emerged
as the most important single factor influencing yield. The positive correlations between
cultivar and panicle grain number and total grain number further indicate the potential
influence of cultivar genetic background on yield. However, traits such as thousand-
grain weight, seed setting rate, and number of effective panicles show relatively smaller
relationships with yield, which may be related to the range of variation in these traits across
different varieties and environments. Yield is determined collectively by the number of
panicles per unit area, the number of grains per panicle, the seed-setting rate, and grain
weight. Previous studies confirm that there is a significant compensation mechanism
between the number of panicles per unit area and the number of grains per panicle, making
it difficult to simultaneously increase both [47–49]. In the 1960s, high-density planting
strategies were adopted in self-pollinated rice production to increase the number of panicles
per unit area [50,51]. However, with the development of hybrid rice cultivars, the research
direction gradually shifts toward increasing yield by enlarging the panicle size [52,53].
The findings suggest that the key approach for improving yield lies in adopting breeding
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improvement, followed by controlling the number of effective panicles and increasing the
total grain count per panicle.

4.2. The Key Factors of Modeling Rice Yield

The random forest algorithm demonstrates strong performance in analyzing the
combined effects of genetic traits, environmental factors, and management practices on
crop development and yield formation [54,55]. By constructing random forest regression
models with multiple input variable combinations, this study systematically evaluates the
contributions of geographic location (Loc), phenology (Phe), meteorology (Meteo), and rice
cultivar (Cultivar) to modeling rice yield.

Variable importance ranking based on all variables model identified the top factors for
rice yield prediction: rice cultivar (cultivar, 8.82%), average daylength during vegetative
growth period (VGP_DL, 8.07%), elevation (Elev, 7.65%), accumulated radiation during the
vegetative growth period (VGP_Rns, 6.69%), the day of year for heading date (DOY_Hea,
6.55%), latitude (Lat, 5.93%), the day of year for sowing date (DOY_Sow, 5.81%), and vege-
tative growth period (VGP, 5.61%). These account for over 50% of prediction importance.
Among them, rice cultivar emerges as the most influential single factor, highlighting its
fundamental role in genetic control [19]. This finding is consistent with Cheng (2021),
who reports that China’s rice breeding achievements have advanced national average
rice yields from 3000 kg/ha in the 1950s to 7050 kg/ha currently, representing a 2.35-fold
increase [56]. The relatively high importance of site geographic location (longitude, latitude,
and elevation) aligns with findings by Xu et al. (2025) [57] and Wang et al. (2024) [58].

Meteorological factors closely associated with rice phenological development play
decisive roles in yield formation [59]. Among meteorological variables, light conditions
(VGP_DL, VGP_Rns, and RGP_DL) are most critical for rice yield prediction. While
reproductive growth period daylength (RGP_DL) is not traditionally considered a direct
yield determinant, its importance emerges through several mechanisms. RGP_DL indirectly
reflects the seasonal position of heading date (related to DOY_Hea), captures seasonal
temperature effects on pollen viability and grain filling when combined with reproductive
growth period temperature (RGP_TMin), and potentially indicates compatibility between
cultivar and heading date adjustment, demonstrating genotype–environment interactions.
These findings align with those of Zhao et al. (2017) [60] and Li et al. (2023) [61], who report
that substantial temporal variability in the importance of meteorological factors. Although
heat–humidity days (HHD) currently show the lowest importance among input variables
in our dataset, this is primarily due to their infrequent occurrence in the present dataset
rather than an actual lack of biological relevance. In fact, HHD creates favorable conditions
for major rice diseases, such as blast disease, which can destroy enough rice annually to
feed 60 million people [62]. Given that global warming is expected to significantly increase
the frequency of high-temperature and high-humidity events [63], HHD should be retained
as a critical input variable in predictive models.

The partial dependence plots reveal the complex interactions between crop growth
and environmental factors. Among them, cultivar exhibits a dominant influence on yield,
highlighting the crucial role of genetic improvement through breeding. Elevation shows
a clear gradient response, while latitude and longitude exhibit pronounced fluctuations,
reflecting the spatial heterogeneity in climatic suitability. Both the sowing date (DOY_Sow)
and flowering date display evident optimal windows, underscoring the value of precise
selection of planting periods. The vegetative growth period (VGP) and reproductive growth
period (RGP) exhibit plateau-like relationships with yield, suggesting threshold effects in
phenological duration—both excessively short durations and long durations negatively
impact yield formation. Temperature-related variables, including VGP_Tmax, VGP_Tmin,
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VGP_TS, RGP_TMin, and RGP_TMean, demonstrate marginal effects, highlighting the
presence of critical temperature thresholds and the necessity for coordinated optimization
in cultivation management. Overall, the random forest model effectively captures nonlinear
and interactive effects among multiple agroecological drivers, offering theoretical insights
and practical guidance for climate-resilient rice production strategies.

Variable importance analysis results show that cultivar type, growth period length,
radiation, day length, elevation, and latitude each contribute less than 10% individually
to yield prediction, yet they remain key variables due to the complex and multifactorial
nature of crop productivity. This apparent paradox reflects the multidimensional, nonlinear
coupling that drives yield formation. In ensemble models like random forest, explana-
tory power becomes distributed across numerous correlated but complementary variables,
preventing any single factor from dominating. Multicollinearity among spatial–temporal
variables (latitude, day length, radiation, and temperature) further disperses importance
metrics among related feature clusters. Mechanistically, cultivars (genotype, G) determine
potential yield ceilings and source–sink relationships, while development period lengths
(VGP/RGP/GP) serve as integrated indicators of environment–management interactions
that influence biomass accumulation and grain filling duration. Net radiation and day
length control photosynthetic quantum supply and photoperiodic signaling, directly af-
fecting canopy energy absorption and phenological transitions. Altitude and latitude
function as spatial proxy variables that capture temperature gradients, radiation fields,
photoperiod trajectories, and precipitation patterns. The remaining variance is explained
by equally important but diffuse factors, including temperature thresholds, precipitation,
heat–moisture stress, and interannual climate variability, which alternately become limiting
factors across different ecological zones and growing seasons. This distributed importance
pattern actually reflects the high-dimensional complexity of yield formation processes
rather than diminishing the significance of identified key drivers.

4.3. Limitations and Prospects

The model developed in this study relies on data from agricultural experiment sites us-
ing optimal management practices that differ significantly from actual farming conditions.
The cultivar trial data fail to fully capture the complexity and variability of real agricultural
environments, particularly in northern ecological zones, limiting model generalizability in
regions with extreme climates or lower management levels. Additionally, this study omits
variables such as soil texture, organic matter, and nutrient content, which may significantly
influence yield and interact complexly with other factors. While location-related effects
partly reflect soil differences, future research requires systematic soil data collection. Tech-
nological advancement during the study period (2007–2018) is not explicitly considered,
despite China’s rice production benefiting from improvements in genetics, crop protection,
and agricultural machinery that collectively contribute to yield growth. Furthermore, the
model only accounts for interannual climate variability without comprehensively eval-
uating long-term climate change impacts, as future climatic conditions will increasingly
diverge from historical patterns, challenging historical-based models in predicting extreme
weather events and resulting pest and disease dynamics.

Future research will integrate phenological process models, climate change simula-
tions, and yield prediction frameworks, extending the scope to grain quality, pest and
disease risks, and climate adaptation strategies. Systematic collection of soil data and
regional technology adoption rates will help distinguish between genetic improvement,
agronomic advancement, and their interactions with environmental and phenological fac-
tors. This integrated approach will support the development of comprehensive agricultural
modeling systems adapted to changing environments, providing scientific evidence for
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policy formulation and field management. Moreover, future research will also aim to
investigate genetic–environment interactions by modeling the correlation between spe-
cific genetic markers in rice cultivars and their performance across diverse cultivation
environments. This approach would involve genotyping the studied rice cultivars and
correlating genetic information with phenotypic performance under varying environmen-
tal conditions. Such research could identify key genetic determinants of environmental
adaptability and yield stability, ultimately supporting more targeted breeding programs
for climate resilience.

5. Conclusions
Based on observational data from rice cultivar trials (2007–2018), this study system-

atically examined cultivar–environment–phenology interactions through random forest
modeling, revealing distinct yield response patterns across multiple factors. The cultivar ex-
hibited strong positive threshold effects, with significant yield jumps for specific genotypes.
Elevation showed step-like positive nonlinear relationships with notable yield increases at
approximately 450 m, while latitude and longitude displayed fluctuating nonlinear patterns
that collectively captured the intricate geographical ecosystem of China’s rice-growing
regions, defining specific climatic conditions and ecological niches. Sowing and heading
dates showed inverted U-shaped relationships, identifying mid-April to early May as the
optimal sowing window for yield maximization. VGP, VGP_DL, VGP_Rns, RGP_TS, and
RGP demonstrated positive threshold effects, while RGP_DL showed a negative threshold
effect. Temperature parameters during VGP (including VGP_TMax, VGP_TMean, and
VGP_TMin), VGP_PRE, RGP_TMax, and RGP_PRE had relatively gentle effects on yield
variation. RGP_TMin, RGP_TMean, and RGP_RHU had negative effects on yield. The
impact of total days of high heat and high humidity (HHD) was minimal. This study
provided a robust framework for understanding rice yield formation mechanisms and
offered practical guidance for cultivar selection and agronomic management optimization
across diverse agroecological environments.
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Abbreviations
The following abbreviations are used in this manuscript:

Lat Latitude.
Lon Longitude.
Elev Elevation.
DOY_Sow The day of year for sowing date.
DOY_Hea The day of year for heading date.
DOY_Mat The day of year for maturation date.
GP The entire development period from sowing to maturation.
VGP The vegetative growth period from sowing to heading.
RGP The reproductive growth period from heading to maturation.
EPPA The number of effective panicles per unit area.
TGPP Total number of grains per panicle.
FGPP Filled grains per panicle.
SSR Seed-setting rate.
TGW Thousand-grain weight.
PH Plant height.
PL Panicle length.
TMin Minimum temperature.
TMax Maximum temperature.
TMean Mean temperature.
PRE Accumulated precipitation.
RHU Relative humidity.
Rns Net solar radiation.
TS ≥8 ◦C thermal summation.
DL Daylength.

HN
The frequency of high-temperature events (3 consecutive days with daily average
temperature ≥30 ◦C).

HD Total days of HN.
HDD Accumulated heat of HD.

CN
The frequency of cold damage events (daily mean temperature ≤ 17 ◦C above
36◦ N or ≤20 ◦C below 36◦ N for 3 consecutive days).

CD Total days of CN.
CDD Accumulated cold of CD.

HHD
Total days with high-heat and high-humidity (daily average temperature ≥ 25.0 ◦C
and relative humidity ≥ 90.0%).

Appendix A
Appendix A.1

Table A1 lists all variables used in this study, their abbreviations, descriptions, and
whether they were used as input variables in the seven models developed.
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Table A1. All variables, abbreviations, descriptions, units, and their applications in the seven models
developed in this study.

Category Variable Abbreviation Description Unit Model

Geographic
variable (Loc)

Longitude Lon Spatial coordinate (east–west) ◦ E 1, 4, 6, 7

Latitude Lat Spatial coordinate
(north–south)

◦ N 1, 4, 6, 7

Elevation Elev Height above sea level m 1, 4, 6, 7

Phenological
variable (Phen)

Sowing date DOY_Sow Day of year for sowing - 2, 5, 6, 7

Heading date DOY_Hea Day of year for heading - 2, 5, 6, 7

Vegetative growth
period VGP Days from sowing to heading Days 2, 5, 6, 7

Reproductive
growth period RGP Days from heading to

maturity Days 2, 5, 6, 7

The entire
development

period
GP Days from sowing to maturity Days -

Meteorological
variable (Meteo)

During Vegetative Growth Period (VGP)

Mean minimum
temperature VGP_TMin Average daily minimum

temperature during VGP
◦C 3, 4, 5, 6, 7

Mean maximum
temperature VGP_TMax Average daily maximum

temperature during VGP
◦C 3, 4, 5, 6, 7

Mean temperature VGP_TMean Average daily mean
temperature during VGP

◦C 3, 4, 5, 6, 7

Accumulated
precipitation VGP_PRE Total precipitation

during VGP mm 3, 4, 5, 6, 7

Average relative
humidity VGP_RHU Average daily relative

humidity during VGP % -

Accumulated net
solar radiation VGP_Rns Total net solar radiation

during VGP MJ·m−2·d−1 3, 4, 5, 6, 7

Average daylength VGP_DL Average daily photoperiod
during VGP h 3, 4, 5, 6, 7

Thermal
summation VGP_TS ≥8 ◦C thermal summation

during VGP
◦C·d 3, 4, 5, 6, 7

During Reproductive Growth Period (RGP)

Mean minimum
temperature RGP_TMin Average daily minimum

temperature during RGP
◦C 3, 4, 5, 6, 7

Mean maximum
temperature RGP_TMax Average daily maximum

temperature during RGP
◦C 3, 4, 5, 6, 7

Mean temperature RGP_TMean Average daily mean
temperature during RGP

◦C 3, 4, 5, 6, 7

Accumulated
precipitation RGP_PRE Total precipitation during

RGP mm 3, 4, 5, 6, 7

Average relative
humidity RGP_RHU Average daily relative

humidity during RGP % 3, 4, 5, 6, 7

Accumulated net
solar radiation RGP_Rns Total net solar radiation

during RGP MJ·m−2·d−1 3, 4, 5, 6, 7
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Table A1. Cont.

Category Variable Abbreviation Description Unit Model

Meteorological
variable (Meteo)

During Vegetative Growth Period (VGP)

Average daylength RGP_DL Average daily photoperiod
during RGP h 3, 4, 5, 6, 7

Thermal
summation RGP_TS ≥8 ◦C thermal summation

during RGP
◦C·d 3, 4, 5, 6, 7

During the Entire Growth Period (GP)

Mean minimum
temperature GP_TMin Average daily minimum

temperature during GP
◦C -

Mean maximum
temperature GP_TMax Average daily maximum

temperature during GP
◦C -

Mean temperature GP_TMean Average daily mean
temperature during GP

◦C -

Accumulated
precipitation GP_PRE Total precipitation during GP mm -

Average relative
humidity GP_RHU Average daily relative

humidity during GP % -

Accumulated net
solar radiation GP_Rns Total net solar radiation

during GP MJ·m−2·d−1 -

Average daylength GP_DL Average daily photoperiod
during GP h -

Thermal
summation GP_TS ≥8 ◦C thermal summation

during GP
◦C·d -

Stress Indicators

The frequency of
high-temperature

events
HN

A high temperature event
refers to a period when the
daily average temperature is
≥30 ◦C for three consecutive
days

- -

Total days of HN HD Total days of HN during GP Days -

Accumulated heat
of HD HDD

≥30 ◦C thermal summation
during high temperature
events throughout the entire
growing period

◦C·d -

The frequency of
cold damage

events
CN

A cold damage event refers to
a period when the daily
average temperature is ≤17
◦C above 36◦ N or ≤20 ◦C
below 36◦ N for consecutive 3
days

- -

Total days of CN CD Total days of CN during GP Days -

Accumulated cold
of CD CDD

Accumulated chilling (≤17 ◦C
above 36◦ N or ≤20 ◦C below
36◦ N) during cold damage
events throughout the entire
growing period

◦C·d -

High-heat and
high-humidity

days
HHD

Days with mean temperature
≥25 ◦C and relative
humidity ≥90%

Days 3, 4, 5, 6, 7
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Table A1. Cont.

Category Variable Abbreviation Description Unit Model

Cultivar variables

Rice cultivar Cultivar Unique identifier for each rice
cultivar (Categorical label) - 7

The number of
effective panicles

per unit area
EPPA - 104 panicles/ha -

Total number of
grains per panicle TGPP - gains/panicle -

Filled grains per
panicle FGPP - gains/panicle -

Seed-setting rate SSR - % -

Thousand-grain
weight TGW - g -

Plant height PH - cm -

Panicle length PL - cm -

Model: 1. Geographic variables only (Loc); 2. Phenological variables only (Phen); 3. Meteorological variables
only (Meteo); 4. Geographic + Meteorological variables (Loc + Meteo); 5. Phenological + Meteorological variables
(Phen + Meteo); 6. Geographical + Phenological + Meteorological variables (Loc + Phen + Meteo); 7. All variables
(Loc + Phen + Meteo + Cultivar). Note: The rice cultivar was treated as a categorical variable, with each cultivar
encoded with a unique identifier. This approach allowed the model to capture cultivar-specific effects without
imposing any numerical ordering or relationship between different cultivars.

Appendix A.2

Table A2 provides the statistical distribution for all variables incorporated in the model
development during the experiments.

Table A2. Statistical distribution for all variables incorporated in the model development.

Variable Min 25% 50% Mean 75% Max Standard
Deviation

Coefficient
of Variation

Yield (kg/ha) 5162.55 7792.50 8668.58 8664.00 9544.50 12,178.80 1290.00 0.15
Cultivar (Categorical

label) 0 - - - - 2174 - -

Lat (◦ N) 19.15 27.25 29.43 29.02 31.02 46.67 3.31 0.11
Lon (◦ E) 80.12 107.73 113.12 112.70 117.23 130.50 5.39 0.05
Elev (m) 1.00 28.20 75.60 237.43 325.00 1318.00 336.77 1.42

DOY_Sow 33 92 115 119.6 137 207 34.7 0.3
DOY_Hea 114 209 224 220.5 237 293 28.3 0.1

VGP (days) 60 87 100 100.9 114 149 16.0 0.2
RGP (days) 16 32 36 36.7 41 80 6.8 0.2

VGP_TMean (◦C) 12.93 21.60 24.36 24.27 26.72 31.75 2.90 0.12
VGP_TMax (◦C) 18.44 25.77 28.42 28.24 30.46 35.73 2.83 0.10
VGP_TMin (◦C) 8.25 17.97 20.95 20.80 23.44 28.35 3.13 0.15
VGP_TS (◦C·d) 664.65 1499.75 1637.61 1613.38 1767.54 2419.91 235.19 0.15
VGP_PRE (mm) 30.55 447.87 588.62 598.02 722.02 1400.55 200.93 0.34

VGP_DL (h) 12.61 14.04 14.30 14.26 14.54 16.20 0.41 0.03
VGP_Rns

(MJ·m−2·d−1) 754.07 1287.31 1461.71 1466.88 1634.70 2703.49 241.41 0.16

RGP_TMean (◦C) 14.13 22.51 24.88 24.73 27.01 31.72 2.79 0.11
RGP_TMax (◦C) 17.60 26.40 28.71 28.59 30.79 37.49 2.86 0.10
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Table A2. Cont.

Variable Min 25% 50% Mean 75% Max Standard
Deviation

Coefficient
of Variation

RGP_TMin (◦C) 10.33 19.20 21.63 21.43 23.73 27.89 2.83 0.13
RGP_TS (◦C·d) 243.27 524.59 583.12 586.77 642.87 1253.94 95.20 0.16
RGP_PRE (mm) 0.04 89.08 139.90 158.55 214.19 674.96 93.93 0.59
RGP_RHU (%) 30.63 70.16 75.22 74.20 78.94 89.19 6.31 0.08

RGP_DL (h) 11.83 13.08 13.46 13.48 13.97 15.44 0.66 0.05
RGP_Rns

(MJ·m−2·d−1) 148.80 427.52 476.19 482.44 529.85 1062.14 82.34 0.17

HHD (days) 0 0 0 1.1 2 16 1.6 1.5

Appendix A.3

Table A3 provides the input variable categories and their importance in each random
forest regression model used in this study.

Table A3. The importance of individual variables in each model.

Variable Categories Input into the Model

Variable
Importance (%) All Loc Phe Meteo Phe + Meteo Loc + Meteo Loc + Phe + Meteo

Cultivar 8.82
VGP_DL 8.07 14.35 9.59 11.40 8.64

Elev 7.65 32.37 9.87 7.85
VGP_Rns 6.69 12.17 8.72 9.46 7.46
DOY_Hea 6.55 27.96 8.18 6.36

Lat 5.93 43.72 7.99 6.06
DOY_Sow 5.81 28.51 8.08 6.16

VGP 5.61 24.54 6.81 6.30
RGP_DL 4.44 10.05 6.01 6.88 4.78

Lon 3.64 23.91 4.42 3.97
VGP_TMax 3.62 6.54 5.06 5.19 4.29
VGP_PRE 3.30 5.90 4.83 4.72 3.95

VGP_TMean 3.30 6.40 4.72 4.83 3.79
VGP_TMin 3.21 6.42 4.67 4.66 3.65
RGP_TMin 3.09 5.69 4.70 4.09 3.51
RGP_RHU 2.60 4.49 3.85 3.72 3.20

VGP_TS 2.57 5.26 3.06 4.52 2.62
RGP_TMean 2.49 4.50 3.72 3.39 2.85

RGP_PRE 2.48 4.32 3.62 3.59 2.97
RGP 2.42 18.98 3.53 2.78

RGP_Rns 2.41 4.81 3.48 3.63 2.71
RGP_TMax 2.23 3.73 3.18 3.10 2.54

RGP_TS 2.09 3.55 2.62 3.27 2.34
HHD 1.00 1.82 1.58 1.28 1.22
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