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A B S T R A C T

Drought is a principal determinant of yield variability in rain-fed wheat systems, with climate change expected to 
exacerbate both the frequency and severity of water deficits. However, knowledge gaps remain in quantifying (i) 
yield loss probability across different drought indices and (ii) the dynamic thresholds at which drought induces 
yield losses under divergent climate scenarios. A systematic quantification of these relationships is essential to 
improve the empirical foundation for risk assessment and adaptive strategies in water-limited agricultural sys
tems. This study analyses future wheat yield loss probability and dynamic drought thresholds in southeastern 
Australia using the APSIM model and copula functions, comparing a soil water index (SPAWI) against a pre
cipitation index (SPI). We found a higher future wheat yield loss probability for SPAWI-based drought (5–20% 
greater than for SPI), underscoring the limitation of rainfall-only indices by neglecting soil buffer effects during 
drought. Drought thresholds were higher for SPAWI than SPI, due to soil moisture buffering, and lower in wetter 
regions. Including CO2 fertilization increases yields and partially offsets drought impacts, lowering both loss 
probabilities and thresholds, while climate-model choice remains the dominant source of projected threshold 
shifts. Our analysis demonstrates that drought index selection influences yield-loss risk projections, and the 
quantified shifts in drought yield thresholds under climate change reveal key soil moisture buffering effects and 
CO2 mitigation potential. These findings provide evidence-based drought thresholds to guide adaptive man
agement in dryland wheat cropping systems under climate change.

1. Introduction

Drought can adversely affect crop production by increasing water 
demand (Mokhtar et al., 2021; Wan et al., 2021), resulting in significant 
yield reductions (Hao et al., 2024; Simanjuntak et al., 2023). As one of 
the driest countries (Wang et al., 2024b) and a major exporter of wheat 
production in the world (Li et al., 2024; Malik et al., 2022; Yuan and 

Yamagata, 2015), Australia faces significant challenges in maintaining 
the stability of its agricultural productivity under drought conditions. 
The New South Wales (NSW) wheat belt, accounting for about 35% of 
the national wheat output (https://www.agriculture.gov.au/abares), is 
particularly vulnerable to droughts. Additionally, a growing body of 
evidence indicates that climate change will further increase the fre
quency and duration of drought events in the future (Steensen et al., 

* Corresponding authors.
E-mail addresses: bin.a.wang@dpi.nsw.gov.au (B. Wang), de.li.liu@dpi.nsw.gov.au (D.L. Liu), yuq@nwafu.edu.cn (Q. Yu). 

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

https://doi.org/10.1016/j.agrformet.2025.111003
Received 21 August 2025; Received in revised form 12 November 2025; Accepted 19 December 2025  

Agricultural and Forest Meteorology 378 (2026) 111003 

Available online 3 January 2026 
0168-1923/© 2026 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0000-0002-6422-5802
https://orcid.org/0000-0002-6422-5802
https://www.agriculture.gov.au/abares
mailto:bin.a.wang@dpi.nsw.gov.au
mailto:de.li.liu@dpi.nsw.gov.au
mailto:yuq@nwafu.edu.cn
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2025.111003
https://doi.org/10.1016/j.agrformet.2025.111003


2025; Wu et al., 2025), consequently impairing crop development and 
amplifying yield instability (Li et al., 2022c; Wang et al., 2024b). 
Accordingly, accurate assessment of drought-induced yield losses is 
crucial for the timely detection of drought risk. However, research on 
wheat yield response to drought in Australia's wheat belt remains 
limited, particularly in future climate scenarios.

The complex nature of drought prevents its direct measurement (Hao 
and Singh, 2015; Mishra and Singh, 2010). Consequently, numerous 
drought indices have been developed to quantify drought severity 
(Mishra and Singh, 2011). Among these, standardized indices are the 
most widely used to systematically capture different drought types by 
converting drought-driving factors like precipitation, evapotranspira
tion, and soil water into standardized values (Chen et al., 2020; Liu et al., 
2021; Mishra and Singh, 2010; Yerdelen et al., 2021). Commonly used 
indices include the SPI (McKee et al., 1993), SPEI (Vicente-Serrano et al., 
2010), PDSI (Palmer, 1965), and SSI (Sheffield et al., 2004). Although 
single-index applications often perform well, selecting among different 
indices for a given application remains challenging (Barua et al., 2011; 
Farahmand and AghaKouchak, 2015; Wable et al., 2018). For instance, 
Tian et al. (2018) compared six drought indices in the south-central 
United States and found that their different calculation mechanisms 
can yield divergent assessments of drought conditions in the specific 
area. This discrepancy also extends to evaluations of drought impact on 
crop yield (Chen et al., 2020; Yao et al., 2022). For rainfed cropping 
systems, the primary factor affecting crop growth is water availability, 
which is directly influenced by precipitation and soil water storage ca
pacity (Feldman et al., 2024; Miguez-Macho and Fan, 2021). Therefore, 
standardized indices based on these two variables can more accurately 
represent crop water stress. Furthermore, previous research, particularly 
on future climate projections, has predominantly relied on 
precipitation-based indices to characterize global drought patterns 
(Gebrechorkos et al., 2025; King et al., 2020). However, the water 
retention ability of soil can affect water supply to crops during precip
itation deficits, and solely using precipitation-based indices may there
fore introduce bias in assessing actual crop drought stress (Chen et al., 
2024; Zhang et al., 2020). Hence, a quantitative comparison of different 
indices under future climate scenarios is necessary. Additionally, studies 
utilizing soil moisture-based indices to analyze future crop drought 
response remain limited, especially in drought-prone rainfed agricul
tural systems like the NSW wheat belt in Australia.

Previous studies have often linked standardized drought indices to 
crop yields through deterministic analytical approaches, such as linear 
regression and correlation analysis (Chen et al., 2020; Hendrawan et al., 
2022). While these methods efficiently identify general relationships 
between drought trends and yield variation, they are generally unable to 
capture the dynamic responses of crop yield to evolving drought 

conditions. Moreover, drought is, by definition, a rare and slowly 
evolving phenomenon characterized by considerable spatial and tem
poral variability (Devanand et al., 2024; Hosseinzadehtalaei et al., 2024; 
Mishra and Singh, 2010). Its irregular onset, gradual progression, and 
nonlinear interactions with crop systems make it inherently difficult to 
capture using linear cause-and-effect assumptions (Clarke et al., 2021; 
Rahimi-Moghaddam et al., 2023). These constraints have motivated the 
shift toward probabilistic approaches that have been widely applied to 
quantify the risk of drought on wheat yield loss (Li et al., 2022b; Liu 
et al., 2022b). Recently, the concept of drought trigger thresholds has 
gained attention for dynamic analysis of drought impacts on specific 
crops (Wei et al., 2023b). In contrast to conventional deterministic 
methods, trigger thresholds based on drought indices identify the 
drought severity associated with the onset of yield loss, offering ad
vantageous early-warning signals for agricultural risk management (Guo 
et al., 2023; Han et al., 2023). This method constructs joint probabilities 
between variables, typically involving a drought index, to determine 
drought trigger thresholds under fixed conditional probabilities (Huang 
et al., 2019; Li et al., 2022b). In addition, dynamic thresholds enable the 
incorporation of region-specific influencing factors in drought response 
(Li et al., 2022b; Xiang et al., 2023), leading to a more reliable estima
tion of drought impacts on wheat yield. For example, soil properties, in 
particular, play a critical role in buffering the effects of drought on crop 
growth (Boeing et al., 2022; Kukal et al., 2023; Zhao et al., 2023). To 
date, there has been limited research specifically focused on identifying 
drought thresholds and quantifying their potential changes under future 
climate scenarios in Australia. Moreover, under changing climatic con
ditions, it is essential to understand how these dynamic drought 
thresholds may shift in the future.

A robust evaluation of future drought effects on wheat requires both 
credible projections of drought evolution and reliable simulations of 
future yields (Asseng et al., 2014, 2019). Process-based crop models 
provide an appropriate platform to simulate crop growth and yields 
under specified scenarios by integrating data on climate, soil properties, 
cultivar characteristics, and management practices (Nóia-Júnior et al., 
2025). In particular, Agricultural Production System sIMulator (APSIM) 
is extensively employed in Australia and performs well in local condi
tions (Holzworth et al., 2014). Nevertheless, integrated studies 
employing APSIM and drought trigger threshold analysis are notably 
lacking for the NSW wheat belt. Furthermore, yield projections are 
highly sensitive to climate input data, and the inherent uncertainties in 
the input from climate models introduce significant variability into 
these simulations (Li et al., 2023; Wang et al., 2020). In addition to more 
frequent droughts, rising CO2 will affect wheat growth and yield. 
Although current understanding suggests a compensatory effect on C3 
crop yields, such as wheat (Liu et al., 2022a; Sugiura et al., 2024), this 

Fig. 1. The location of the NSW wheatbelt and the four selected sites (a). Mean monthly cumulative rainfall, average temperature (Tmean) during the wheat growing 
season (Apr. - Dec.) from 1981 to 2020 for the study sites (b).
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benefit may be offset by concurrent drought stress (Rezaei et al., 2023; 
Wang et al., 2022b). How these interacting effects will operate under 
future climates, and how they will influence drought thresholds, re
mains unclear.

Therefore, this study integrates process-based crop modelling, joint 
and conditional probability methods, and uncertainty analysis to 
develop a framework for analysing the drought-induced threshold for 
yield loss under climate change. Wheat yield and soil available water 
were first simulated using historical and projected future climate data at 
four representative sites in southeastern Australia. A joint distribution 
function between the drought indices (SPI and Standardized Plant 
Available Water Index) and wheat yield was then constructed to identify 
thresholds using conditional probability methods. Finally, we evaluated 
threshold changes under climate scenarios and identified key contrib
uting factors. The study aimed to 1) project the loss probability change 
of wheat yield with different drought indices under climate scenarios, 2) 
assess the change of drought-triggered yield loss threshold with two 
drought indices, and 3) identify the contributions to variations in 
drought-triggered thresholds for wheat yield loss. These findings will 
provide evidence-based drought threshold dynamics to inform adaptive 
management for rainfed wheat production systems in southeastern 
Australia.

2. Materials and methods

2.1. Study area and historical climate data sources

The NSW wheat belt is a vital region for Australian agriculture, 
primarily located in the central and western parts of New South Wales 
(Shi et al., 2023). This region experiences substantial climatic variability 
and geographic diversity, with annual rainfall in the west being up to 
four times lower than in the east, and annual temperature up to twice as 
high (Feng et al., 2019; Xiang et al., 2023). For this study, we selected 
four representative sites, Walgett (WA), Balranald (BA), Moree Plains 
(MP), and Wagga Wagga (WW) (Fig. 1a). The northern sites (WA and 
MP) are warmer, while BA in the west is drier, and WW in the east is 
wetter. They represent the main climate features of the wheat belt 
(Wang et al., 2017a). We utilized daily climate variables from the SILO 
dataset (Jeffrey et al., 2001). The daily data for the period 1981–2020, 
including maximum and minimum temperatures ( ◦C), and rainfall 
(mm), were extracted to assess the impacts of climate variability and 
change on wheat yield in southeast Australia. The long-term means of 
monthly cumulative rainfall and monthly average temperatures across 
the selected sites during the wheat growing season (Apr. - Dec.) from 
1981 to 2020 are shown in Fig. 1b.

2.2. Future climate data

Coupled Model Intercomparison Project version 6 (CMIP6) provides 
meteorological data for multi-model future climate projections (Hou 
et al., 2024; Wang et al., 2024b). Given the low resolution and biases in 
the raw GCM data (Table S1) (Li et al., 2025a), a statistical downscaling 
approach was applied to improve the accuracy of site-specific climatic 
data (Liu and Zuo, 2012). The approach involved spatial downscaling of 
the raw monthly weather data using inverse distance weighting, fol
lowed by bias correction. Daily weather data were then generated using 
the WGEN NWAI-WG weather generator (Liu and Zuo, 2012). This 
method for producing future weather data is widely used in climate 
change research (Sun et al., 2024; Zhang et al., 2023b).

Two Shared Socioeconomic Pathways (SSPs) were used in this study 
to represent different future climate scenarios: SSP2–4.5 (SSP245, in
termediate scenario) and SSP5–8.5 (SSP585, high emissions scenario) 
(Li et al., 2024; O'Neill et al., 2016; Zhu et al., 2023). Although SSP585 is 
regarded as an “extreme” scenario (IPCC, 2021), exploring 
drought-triggered thresholds for wheat yield losses under such condi
tions is critical. Daily meteorological data downscaled from 27 GCMs 

were collected for the entire study period (1981–2100) under both SSP 
scenarios. The dataset included the same meteorological variables as the 
SILO dataset. To facilitate analysis and comparisons of variability, the 
period was divided into three intervals: present (1981–2020 is referred 
to as “Baseline”), near future (2021–2060, as “2040s”), and far future 
(2061–2100, as “2080s”).

2.3. APSIM-wheat simulation and validation

We used APSIM-Wheat, a widely recognized process-based crop 
model in Australia (Richetti et al., 2024; Wang et al., 2018), with version 
7.10 to simulate multi-year wheat yields at study regions (Li et al., 
2025b; Xiang et al., 2025). Moreover, the specific trial managements of 
the Grains Research and Development Corporation National Variety 
Trials (GRDC–NVT, https://nvt.grdc.com.au/) were used to adjust the 
simulation settings. Based on the sowing guide of GRDC, we selected the 
widely used cultivar “Sunvale” to simulate the wheat yield among all 
study sites (Feng et al., 2020a, 2019), with sowing depth and density set 
at 30 mm from the soil surface and 120 plants m-2, respectively. The 
parameters of the cultivar are shown in Table S2. The initial nitrate-N 
and ammonium-N of the total soil layers were set to 35 kg ha-1 and 15 
kg ha-1, respectively, and another 60 kg ha-1 nitrogen fertilizer was 
added to the 50 mm depth from the soil surface on the sowing day. 
Sowing decisions were guided by a local empirical method within the 
sowing window and specific water requirements (Li et al., 2024; Xiang 
et al., 2025) (Eqs. (S1), (S2)). Corresponding representative soils were 
selected for each site from the APSoil database (Keating et al., 2003; 
Xiang et al., 2025), and detailed mechanical parameters of each soil are 
shown in Table 1. All the settings mentioned above were reset on the 
first day of each simulation year to remove the “carry-over” effects, 
which refers to the persistence of soil, crops, and management states 
from one growth season into the next (Wang et al., 2017b; Xiang et al., 
2025), and the rest of the modules remained coherent to maintain 
consistency across simulations and ensure the wheat yields are mainly 
affected by climate change. Those settings were used in the simulations 
of the Baseline, 2040s, and 2080s. As the study objectives refer to the 
response quantification of wheat yield to drought impacts under future 
climate conditions, the simulated wheat yield, growth stage, and plant 
available water (PAW) were thus used for further analysis.

Although the APSIM-wheat model is widely employed and well- 
calibrated in Australia, specific tests are still essential for simulating 
results (Feng et al., 2020a). In this study, we collected the annual in-situ 
wheat yield data from the GRDC–NVT and the daily available water 
data from the Soil Moisture Integration and Prediction System (SMIPS) 
to validate the simulated wheat yield and PAW, respectively (Dreccer 
et al., 2018; Feng et al., 2022; Stenson et al., 2021). GRDC–NVT 
constitute Australia’s largest independent multi-environment trial 
network for grain crops (https://nvt.grdc.com.au/). The framework 

Table 1 
Properties of soil for each study site.

Site Soil ID Layers Depth 
(m)

PAWCa

(mm)
Initial 
waterb ( 
%)

Walgett (WA) Walgett 
No.1016

7 1.8 131 30

Balranald 
(BA)

Euston No.334 7 1.4 100 20

Moree Plains 
(MP)

Pallamallawa 
No.055

7 1.8 111 30

Wagga 
Wagga 
(WW)

Lockhart 2 No. 
1085

9 1.8 144 50

a Plant available water capacity, the maximum amount of water the soil stores 
for plants.

b Percentage of maximum available water relative to the lower limit of the soil 
on the reset date.
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ensures consistent trial design and quality control, enabling robust 
comparisons of yield performance at site, regional, and seasonal scales 
(Feng et al., 2020a). SMIPS generates national daily total available soil 
water dynamics (0–90 cm) for plants across Australia at approximately 1 
km resolution, and it is parameterised with physical properties from the 
Soil and Landscape Grid of Australia and employs a data-model fusion 
scheme driven by precipitation and potential evapotranspiration from 
the Australian Bureau of Meteorology (Stenson et al., 2021). We 
extracted site-matched annual yield of GRDC–NVT and daily available 
water of SMIPS using a nearest-neighbour criterion in 
latitude-longitude, and the matched records were then used for the 
validation of APSIM simulation. The coefficient of determination (R2) 
and the root mean square error (RMSE) were used to assess the simu
lation performance (Feng et al., 2022; Quan et al., 2024), and the 
comparison results of the observed and simulated wheat yields and PAW 
are shown in Figs. S1 and S2, respectively.

The gradual rise in CO2 is projected to substantially impact crop 
growth by modifying plant properties such as radiation use efficiency 
(RUE) (Feng et al., 2019). The effect of CO2 on RUE in APSIM simulation 
is calculated by Eqs. (S3), (S4) (Ahuja et al., 2022; Zheng et al., 2015). 
We used empirical functions to generate the time-varying CO2 concen
trations under two SSP scenarios (Liu et al., 2014, 2017; Wang et al., 
2022a) (Eqs. (1), (2)), and the atmospheric CO2 was estimated based on 
the calendar year to represent "With CO2″ conditions. In addition to 
evaluating the impact of CO2 on wheat yield and its effect on 
drought-trigger thresholds, we also included a controlled scenario with a 
constant CO2 concentration of 412 ppm as "Without CO2" conditions 
during the 2040s and 2080s based on measured CO2 contents in 2020 
(https://gml.noaa.gov/).   

CO2,SSP585=757.44+
84.938 − 1.537y

2.2011 − 3.8289y− 0.45242+2.4712 ×10− 4(y+15)2

+1.9299 ×10− 5(y − 1937)3
+5.1137 ×10− 7(y − 1910)4

(2) 

where y is the calendar year from 2021–2100.

2.4. Standardized drought indices

In this study, APSIM simulation settings were held constant to isolate 
the climate factors, ensuring that crop growth was driven primarily by 
climatic variability rather than management interventions. Specifically, 
we examined wheat yield responses to drought, focusing on two types: 
meteorological drought, governed by precipitation anomalies (Feng 
et al., 2020b; Spinoni et al., 2019), and agricultural drought, repre
sented by changes in soil water (Rahmati et al., 2020; Wu et al., 2025). 
Many standardized indices are available to represent drought severity, 
and multivariate approaches are often employed to increase accuracy 
(Mishra and Singh, 2011; Zargar et al., 2011). Nevertheless, when 
applied to future climate scenarios, the inclusion of additional climatic 
variables can introduce nontrivial uncertainty, as future climate model 
simulations already introduce heterogeneity (Virgilio et al., 2022; Yao 
et al., 2026). Additionally, indices that achieve higher reliability at 
extended time scales are poorly matched to the short-term drought 

dynamics governing crop growth (Geruo et al., 2017; Li et al., 2021). 
Therefore, we used the Standardized Precipitation Index (SPI) and 
Standardized Plant Available Water Index (SPAWI) to capture the 
meteorological and agricultural drought conditions during wheat 
growth.

The SPI was chosen as a benchmark for precipitation deficit due to its 
computational simplicity and reliance solely on precipitation data 
(AghaKouchak and Hao, 2014; Dubois and Larocque, 2024; Wu et al., 
2021). It is derived by transforming rainfall data into probability values 
through a gamma distribution and then is converted into standardized 
values using an inverse normal distribution (Angelidis et al., 2012; 
Kanthavel et al., 2022; Vergni et al., 2021; Yerdelen et al., 2021) (Eqs. 
(3), (4)). The SPAWI was selected as it directly reflects the soil water 
stress of crop growth by PAW and is a direct output of the APSIM soil 
water balance module (Gajurel et al., 2024; He and Wang, 2019; Ver
burg et al., 2017), ensuring mechanistic consistency within our model
ling framework. SPAWI is constructed similarly to SPI, but it uses the 
empirical Gringorten plotting position formula for the distribution 
(Gringorten, 1963; Wu et al., 2021; Xiang et al., 2025, 2026) (Eq. (5)). 
The severity classification of SPI and SPAWI is shown in Table 2. 

DI = φ− 1(p(x))                                                                               (3)

pSPI

⎛

⎝xi) =
1

Γ(α)

∫βxi

0

tα− 1e− tdt (4) 

pSPAWI(xi) =
#
(
xj ≤ xi

)
− 0.44

n + 0.12
(5) 

where φ− 1(*) is the inversed standard normal distribution function; x is 
the time series of rainfall or PAW, mm; p(*) is the corresponding 
empirical probability of xi; Γ(*) is the Gamma function; α is the shape 
parameter; β is the rate parameter; n is the time series length of rainfall 
or PAW, i and j are the serial number of n, 1 ≤ j ≤ n, and i = 1, …, n; #(*) 
represents the rank of x in decreasing trend.

We adapted the calculation period to correspond with wheat growth 
stages. The end date of three wheat growth stages, including juvenile, 
flowering, and grain filling, was first identified based on the simulated 
phenological results from APSIM. For each stage, we used the end date 
as a reference and backcast a 30-day range, corresponding to “1 month”, 
to calculate monthly values, such as monthly cumulative rainfall and 
mean PAW. The adjusted data were then used to calculate the drought 
indices. In addition, 3-month and 6-month time scales were applied in 
the indices estimation, as previous studies indicated that longer time 
scales capture the drought impacts on crop yield effectively (Hendrawan 
et al., 2022; Peña-Gallardo et al., 2019; Xiang et al., 2023). So, there are 
3 growth stages and 2 timescales of drought indices. For example, “SPI-3 

Table 2 
Severity categories of SPI and SPAWI.

Drought severity categories Value range of SPI/SPAWI

Normal (− 0.5, 0]
Mild drought (− 1, − 0.5]
Moderate drought (− 1.5, − 1]
Severe drought (− 2, − 1.5]
Extreme drought (-∞, − 2]

CO2,SSP245= 62.044+
34.002 − 3.8702y

0.24423 − 1.1542y2.4901 +2.6827 × 10− 4(y − 1960)3

− 2.2448(y − 2030) − 9.2751 × 10− 7(y − 1910)4
+2.8057 × 10− 2(y − 1900)2

(1) 
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Juvenile” refers to the SPI value for the juvenile stage at the 3-month 
scale, and the same logic was applied to SPAWI.

2.5. Yield loss trigger threshold identification

Drought events disrupt wheat growth, reduce dry matter accumu
lation, and ultimately lead to yield declines (Gupta et al., 2020; Tardieu 
et al., 2018). To assess the severity of drought required to cause yield 
reductions, we applied a joint-conditional probability framework to 
identify the drought indices trigger threshold of wheat yield reduction. 
First, the time series of annual wheat yield and drought indices 
(SPI/SPAWI) were paired into corresponding sequences and then were 
assessed for correlation with Kendall's τ coefficient under different SSPs, 
GCMs, CO2 conditions, and period intervals (Baseline, 2040s, and 
2080s) (Temizhan et al., 2022). The drought index with the highest 
correlation coefficient was selected to construct a joint probability dis
tribution and determine the drought-trigger threshold for yield reduc
tion. Then, we fitted marginal distribution functions for the time series 
of yield and the corresponding drought index. Three distribution func
tions, Normal, Gamma, and Cauchy (Table S3), were used for wheat 
yield, and the Normal function was selected for drought index (Xiang 
et al., 2025). The marginal distributions of wheat yield and drought 
index were combined to construct the joint probability distribution 
functions by a two-dimensional copula method (Guo et al., 2023; Hao 
et al., 2017; Naseri and Hummel, 2022) (Eq. (6)), and five copula 
functions, including Clayton, Frank, Gaussian, Gumbel, and t (Genest 
and Favre, 2007) (Table S4) were applied to fit the optimal joint prob
ability distribution functions between wheat yield and corresponding 
drought index based on the minimal value of Akaike Information Cri
terion (AIC) (Sakamoto et al., 1986), it represents the simultaneous 

occurrence of drought and yield reduction (Li et al., 2022b; Liu et al., 
2022b).

Joint probability can be transformed into conditional probability to 
estimate the probability of wheat yield loss under specific drought 
conditions (Seo et al., 2024; Wei et al., 2023b; Zhang et al., 2023a) (Eq. 
(7)). We calculated the yield reduction risk as the conditional proba
bility of simulated yields declining below the 20th percentile under 
specific drought conditions (SPI/SPAWI < − 1). Additionally, as the 
drought index value decreases, the probability of yield falling below a 
set value approaches 100%. By fixing the conditional probability value, 
Pc, and the yield loss conditional value, Yc, we can inversely determine 
the conditional drought index value that corresponds to a Pc likelihood 
of yield loss reaching Yc. This value is referred to as the drought index 
trigger threshold of yield loss (DT) (Guo et al., 2023; Han et al., 2021) 
(Eq. (8)). In this study, we adopted the approaches from the previous 
research and set Pc at 50% and defined Yc as the 30th of average yield 
simulated with SILO climatic data in the baseline period for each site 
(Han et al., 2023; Yang et al., 2024). The iteration range of the drought 
index was set from 0 to − 3 based on the severity range (Table 2), with a 
step length of 0.01. When the conditional probability calculated from 
the iterated drought index exceeds the Pc, the DT is identified as the left 
side of this step interval (X1 in Eq. (8)), and a detailed calculation pro
cedure is shown in Fig. 2. Lower thresholds indicate the need for more 
severe drought conditions to cause the same yield loss (Han et al., 2023; 
Yang et al., 2024). 

Fx,y(x,y) = C[Fx(x), Fy(y)]                                                               (6)

P(y ≤ Y | x ≤ X) =
P(y ≤ Y, x ≤ X)

P(x ≤ X)
=

C[Fy(Y), Fx(X)]
Fx(X)

(7) 

Fig. 2. Framework of yield loss probabilistic analysis and drought threshold identification. GCM, global climate model; SSP, shared socioeconomic pathways; APSIM, 
Agricultural Production System sIMulator; PAW, plant available water; AIC, Akaike Information Criterion; F(*), marginal cumulative distribution function; C(*), 
copula function; DT, drought threshold.

Pc =P(y ≤ Yc | x ≤ DT) =
P(y ≤ Yc, X1 ≤ x ≤ X2)

P(X1 ≤ x ≤ X2)
=

C[Fy(Yc), Fx(X2)] − C[Fy(Yc), Fx(X1)]

Fx(X2) − Fx(X1)
(8) 
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where x and y are the drought indices (SPI/SPAWI) and wheat yield, 
respectively; F(*) and C(*) are the marginal distribution function and 
copula function, respectively; X and Y are conditional values of SPI/ 
SPAWI and wheat yield, respectively; Pc is the fixed conditional proba
bility; Yc is the fix conditional wheat yield; X1 and X2 are the left and 
right side value of drought index step interval.

2.6. Contribution analysis

We employed a three-way Analysis of Variance (ANOVA) to identify 
the contribution sources of variation in the drought index trigger 
threshold for yield reduction under future climate conditions (Huang 
et al., 2022; Li et al., 2025a; Wang et al., 2020). SSP, GCM, and CO2 
conditions were selected as contributing factors, and both the individual 
and interaction effects were analyzed (Eq. (9)).  

where SST is the total sum of squares of all factors; SSSSP, SSGCM, and 
SSCO2 are the separate contributions of SSP, GCM, and CO2 conditions, 
respectively; SSSSP×GCM, SSSSP×CO2, SSGCM×CO2, and SSSSP×GCM×CO2 are 
the interaction contributions of SSP, GCM, and CO2 conditions.

2.7. Statistical test

We conducted several tests in the construction process of joint 
probabilities to ensure the data meet the fitting requirements. The 
Genest and Favre (2007) method was employed to evaluate the Ken
dall’s τ correlation coefficient results. The Ljung-Box test was applied to 
assess autocorrelation in the time series of wheat yield and drought 
index (Ljung and Box, 1978), and the Kolmogorov-Smirnov test was 
used to test marginal distribution fitting results (Gunar and Trenkler, 
1995). Finally, the goodness of fit for the copula function was assessed 
using White’s information matrix equality (Huang and Prokhorov, 2014; 
White, 1982). The general framework of the study is shown in Fig. 2.

3. Results

3.1. Changes in wheat yields and drought indices

Fig. 3 illustrates the ensemble means of wheat growth stages under 
SSP245 and SSP585 scenarios for the baseline period, the 2040s and the 
2080s. Fig. 3a presents the duration of each stage, while Fig. 3b depicts 
the earliest start and the latest end dates. In general, most sites experi
enced the longest duration at the juvenile stage, and the shortest in the 
grain filling stage. In the southern sites (BA, WW), the duration of 
growth stages was progressively shortening, with this trend expected to 
intensify in the future. For instance, under SSP245, the juvenile stage in 
WW shortened from 78 days during the baseline to 73 days in the 2080s, 
and decreased further to 72 days under SSP585. A similar pattern of 
substantial shortening was observed for the flowering stage across 
southern sites. Concurrently, the initiation of most growth stages 
advanced, particularly under SSP585. At WW, the flowering stage began 
10 days earlier in the 2080s under SSP245 and 12 days earlier under 
SSP585, while grain filling commenced 14 and 18 days earlier, respec
tively. Spatially, MP consistently exhibited the earliest start dates across 
growth stages, followed by WA and BA, with WW starting the latest.

We compared projected wheat yields under different CO2 conditions 
to the baseline, with results shown in Fig. 4a. Wheat yields declined 

when the CO2 level remained constant, with greater decreases observed 
under SSP585 compared to SSP245. For instance, wheat yields in WW 
decreased by 17% in the 2080s under SSP585 (median reduction of 27 
GCMs, applicable hereafter), compared to a 5% decline under SSP245. 
In WA, the yield decreases under SSP585 were − 8% in the 2040s and 
− 16% in the 2080s, while under SSP245, they were − 15% and − 15%, 
respectively. In contrast, under scenarios with continuous CO2 increases, 
wheat yields at the northern station increased in the future, with SSP585 
resulting in larger increases than SSP245. These increases were more 
pronounced in the 2080s. For example, MP yields decreased by 5% in 
the 2040s and 1% in the 2080s under SSP585, compared to 0 and 20% 
increases under SSP245.

We also analyzed the temporal changes in SPI and SPAWI across the 
entire period. The grain filling stage results at a 6-month scale are shown 
in Fig. 4b. Under both SSP245 and SSP585 scenarios, drought indices 
exhibited broadly similar temporal patterns, though variations existed 
across regions and drought indices. In southern sites (BA and WW), the 

SPI showed gradual declines over time. Similarly, the SPAWI in WW 
declined more sharply, while the SPAWI decreased marginally in BA. In 
contrast, northern regions displayed stable SPI trends (WA and MP), 
with median values hovering near baseline levels. In addition, the 
SPAWI in this region demonstrated a slight upward trend.

3.2. Joint probability constructions of wheat yields and drought indices

We calculated the Kendall’s τ correlation between drought indices 
(SPI, SPAWI) and wheat yield across different periods. Table 3 presents 
the median correlation results from 27 GCM simulations for the grain 
filling stage at a 6-month scale, while results for other stages and scales 
are provided in Fig. S3.

In general, SPAWI exhibited closer correlations with yield than SPI 
except in WW. For example, the median correlation between SPAWI and 
yield in BA under all periods, SSPs, and CO2 conditions was about 0.05 
higher than that of SPI. Median correlations remained relatively 
consistent in different CO2 conditions. For instance, the SPI-yield cor
relation was consistently measured around 0.5–0.6 in WA. Similarly, no 
significant differences were observed in median correlations under 
different SSP conditions. Overall, the correlations between the indices 
and wheat yield were moderate across all GCM simulations. We con
ducted validation tests for all drought index-wheat yield pairs, with the 
results detailed in Fig. S4. Subsequently, we constructed copulas using 
the pairs that passed all tests, and the results for the five candidate 
copula equations are shown in Table S5. We then used the joint proba
bility functions to estimate wheat yield loss probabilities under drought 
conditions and to identify drought-trigger thresholds.

3.3. Variation of wheat yield loss probability and drought trigger 
thresholds

We used a copula function to calculate conditional probabilities of 
wheat yield loss under various drought conditions. Fig. 5 illustrates the 
median conditional probability based on 27 GCMs for the grain filling 
stage at a 6-month scale when SPI/SPAWI < − 1. Across sites and pe
riods, conditional yield loss probabilities based on SPAWI consistently 
exceeded those based on SPI, with the divergence enlarging toward the 
2080s. CO2 fertilization generally reduced probabilities for both indices, 
with larger relative reductions under SSP585 than SSP245. In WA, SPI- 
based probabilities remained moderate, whereas SPAWI was persis
tently higher, and CO2 further suppressed probabilities, most noticeably 

SST=SSSSP+SSGCM+SSCO2+SSSSP×GCM+SSSSP×CO2+SSGCM×CO2+SSSSP×GCM×CO2                                                                                                   (9)
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for SPI in the 2080s. BA showed a steady rise in SPAWI through time 
with limited CO2 sensitivity, and SPI remained lower. MP exhibited a 
progressive increase in SPAWI-based probabilities without CO2 effects 
from the Baseline to the 2080s, reaching nearly 90%, with only modest 
CO2 mitigation. In WW, probabilities were lower, but SPAWI still 
exceeded SPI, particularly by the 2080s. Moreover, CO2 effects were 
more pronounced at all sites. In WA, CO2 induced a gradual decline in 
both indices, especially SPI in the 2080s. BA recorded sharp CO2-related 
decreases for both indices, though SPAWI remained higher than SPI. In 
MP, CO2 markedly reduced SPAWI-based probabilities from about 90% 
without CO2 to lower than 60% by the 2080s. WW also showed clear 
CO2-driven reductions, with SPI decreasing substantially, and SPAWI 
likewise declined when CO2 was included. Overall, SPAWI indicates a 
higher drought-related wheat yield loss probability than SPI, especially 
in MP and BA, and this gap widens over time. Nonetheless, CO2 tends to 
moderate risks, most strongly under SSP585.

We identified drought index trigger thresholds (DT) for yield loss 
using the methodology described in Section 2.5. Therefore, the thresh
olds correspond to a 50% conditional probability and a conditional yield 
loss value equal to the 30th percentile of the average baseline yield. Here 
we present the results for the grain filling stage at a 6-month scale 

(Fig. 6), while results for other stages and scales are shown in Fig. S5. 
Thresholds closer to 0 indicate that milder droughts can cause heavy 
yield losses. At the baseline, SPI and SPAWI thresholds are closely 
aligned within sites (differences < 0.2) but vary markedly among sites, 
with drier western/northern locations requiring less negative thresholds 
than wetter eastern/southern sites. Under future climates, SPAWI 
thresholds generally exceed SPI, and CO2 fertilization tends to lower 
thresholds, especially by the 2080s and under SSP585. In scenarios 
without CO2, thresholds for both indices rise relative to the baseline, 
with larger increases under SSP585 and in the 2080s. For example, in BA 
under SSP245, median values of SPI/SPAWI shift from − 0.28/− 0.27 
(2040s) to − 0.25/− 0.17 (2080s). However, in scenarios with CO2 
considered, thresholds decline relative to the baseline, with stronger 
declines under SSP585 and in the 2080s. For instance, in MP, median 
values of SPI/SPAWI change from − 0.37/− 0.41 (2040s) to − 0.84/ 
− 0.72 (2080s). In general, the drought-triggering thresholds were 
higher at drier sites (WA, MP, BA) compared to the wetter site (WW).

We used ANOVA to analyze the factors contributing to the variation 
of drought-trigger thresholds (DT) for yield loss. Fig. 7 shows the results 
for the 6-month scale during the grain filling stage, with SPI shown in 
the inner rings and SPAWI in the outer rings, while results for other 

Fig. 3. Simulated duration and timing of wheat growth stages during the baseline period (1981–2020) and two future periods—the 2040s (2021–2060) and the 
2080s (2061–2100) under SSP245 and SSP585 scenarios across four study sites. Values represent the median of projections from 27 GCMs used for each scenario.
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scales and stages are provided in Fig. S6. Across sites and indices, GCM 
choice is the dominant source of DT variability, accounting for 51.1% to 
66.7% of the total variance across all sites and drought indices. In 
contrast, the choice of emission scenarios (SSPs) alone was a negligible 
contributor, while CO2 and GCM × SSP interactions exhibited varying 
impacts based on both the location and the drought index. These 
interactive effects were consistently more pronounced for SPAWI than 
for SPI. For instance, the GCM × SSP interaction explained 20.6% of the 
variance for SPAWI in WA, compared to only 13.2% for SPI. A similar 
pattern was observed in MP. Overall, GCM-related uncertainty domi
nates DT changes, with smaller, context-specific contributions from CO2 
and interactions.

4. Discussion

Using the APSIM crop model, we simulated future wheat growth in 
the NSW wheat belt under different SSP scenarios. Our results indicate a 
consistent trend of shortening and advancement of key growth stages 

(juvenile, flowering, and grain filling) in the future (Fig. 3). This 
phenological shift is primarily driven by rising temperatures, which 
accelerate thermal time accumulation and hasten wheat development 
(Li et al., 2022a; Sun et al., 2024; Ye et al., 2020). Our yield projections 
reveal a critical dependence on the CO2 fertilization effect. When 
elevated CO2 is considered, wheat yield shows an overall increase 
relative to the baseline, with greater gains under SSP585 than SSP245 
and in the 2080s than in the 2040s (Fig. 4), consistent with previous 
studies (Azameti and Padaria, 2024; Orlov et al., 2024; Wen et al., 
2023). This benefit stems from improved photosynthesis and water-use 
efficiency (Fan et al., 2023; Leakey et al., 2009). In contrast, simulations 
under constant CO2 conditions exhibit a declining trend (Fig. 4), high
lighting the adverse impacts of rising temperatures and altered rainfall, 
and thus underscoring the significant role of CO2 in mitigating future 
climate-related yield losses.

Drought manifestations under future climate conditions exhibited 
distinct regional and index-specific patterns. Meteorological drought 
(SPI) is projected to intensify in southern sites, reflecting regional 

Fig. 4. Projected changes in wheat yield with and without CO2 fertilization effects for two future periods (2040s and 2080s) under SSP245 and SSP585, along with 
time-series drought indices (SPI and SPAWI at a 6-month scale during the grain filling stage) from 2021 to 2100 at four study sites. For wheat yield, boxplot 
boundaries indicate the 25th and 75th percentiles, whiskers represent the 10th and 90th percentiles, and black lines within the boxes denote the median values across 
27 GCMs. For drought indices, shaded areas indicate the interquartile range (25th–75th percentiles), and solid lines represent the GCM median and the linear trend 
over time.
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rainfall variability (Sahbeni et al., 2023; Samantaray et al., 2022; Tefera 
et al., 2024), while northern sites show little change (Fig. 4). Notably, 
the fitted trend lines suggest a less pronounced intensification of agri
cultural drought (SPAWI) compared to meteorological drought (Feng 
et al., 2024; Guo et al., 2025) (Fig. 4). This divergence can be attributed 
to the buffering capacity of soil, thereby mitigating crop water stress 
during low rainfall periods (He and Wang, 2019; Wang et al., 2019). 
Furthermore, meteorological indices like SPI can be misleading, as high 
rainfall may be lost to runoff or evaporation without benefiting the plant 
(Bennie and Hensley, 2001; Bodner et al., 2015). Our findings demon
strate that different drought indices capture varying aspects of crop 
water stress, emphasizing the necessity of using multiple indicators for 
an accurate agricultural drought assessment.

Additionally, our results show that yield loss probability varies with 
drought severity (Fig. 5), and these findings are consistent with previous 
research (Yang et al., 2024). However, the results also show differences 
in the probability range of yield loss under different drought indices. 
Specifically, for the same index value, SPAWI indicates a higher yield 
loss probability than SPI. This difference likely arises because changes in 
soil water content have a more direct and greater impact on crop yield 
than changes in rainfall (Zeleke, 2021). Boas et al. (2024) found that in 
areas with high soil water content, crop growth is not significantly 
affected by low rainfall because the stored soil water can mitigate 
drought-induced water stress, while lower soil water content will 
directly affect crop uptake and ultimately affect crop yield. Our findings 
support this view, demonstrating that the SPI, which incorporates 
rainfall, may potentially underestimate the probability of wheat yield 
loss compared with soil water-based SPAWI. Moreover, the projections 
indicate that the northeastern (MP) and southwestern (BA) sites will 
likely face more severe drought impacts in the future, highlighting these 
areas as priority targets for adaptation measures.

We further analyzed variations in DT for wheat yield loss with 

different drought indices and time periods. The results reveal clear 
regional differences in these thresholds (Fig. 6). The threshold change 
shows the regional variability of wheat yields caused by different rain
fall and soil water content. During the baseline period, the 3-month SPI, 
being more sensitive to short-term deficits, often showed a higher (less 
negative) threshold than the 6-month SPI, particularly at the grain filling 
stage in southern sites like WW (Fig. S5). In contrast, under future cli
mates, the 6-month thresholds became systematically higher than the 3- 
month thresholds, and this difference widened in the 2080s. Future 
variations in rainfall and soil water content contribute to different 
drought intensities across regions, ultimately affecting wheat growth 
and yield (Helman and Bonfil, 2022; Slater et al., 2022). Notably, SPAWI 
thresholds are consistently higher than those of SPI under projected 
future conditions, suggesting that agricultural drought, resulting from 
soil water stress, is more likely to induce wheat yield loss than meteo
rological drought caused by rainfall shortage. Furthermore, the pro
gression of growth stages exerted a strong influence. In the baseline 
period, thresholds generally increased (became less negative) from ju
venile to grain filling stages. However, this trend reversed under future 
projections, with thresholds decreasing at later stages, and the decline 
was more pronounced in the 2080s (Fig. S5). We also found that, in 
contrast to other sites, certain value thresholds in WW demonstrated 
higher median SPI thresholds compared to SPAWI. This may be attrib
uted to the relatively wetter conditions in WW (Wang et al., 2018; Xiang 
et al., 2025), where superior soil water retention provides an effective 
buffering capacity that mitigates losses risk of drought-induced wheat 
yield (He et al., 2022). Consequently, soil water stress can more sensi
tively cause equivalent reductions in wheat yield than rainfall deficit. 
Furthermore, drought thresholds in the far future are lower than those in 
the near future. The impact is further amplified by higher CO2 emission 
scenarios, as elevated CO2 conditions under the SSP585 result in 
stronger fertilization effects and lower yield reduction compared to 
SSP245 (Orlov et al., 2024).

The contribution analysis of the future trigger threshold variation 
indicates that under different drought indices, changes in drought 
trigger thresholds are primarily driven by GCMs (Fig. 7). The differences 
observed might be attributed to varying rainfall simulations among 
climate models (Huang et al., 2022; Li et al., 2025a). Additionally, CO2 
concentrations also influence threshold changes at some sites. Increased 
CO2 is known to reduce crop stomatal conductance, decrease transpi
ration, enhance water-use efficiency, and improve drought resistance, 
ultimately leading to higher crop yields (Sun et al., 2023; Wei et al., 
2023a). Our findings confirm the yield-enhancing “CO2 fertilization” 
effect, which is more pronounced under the high-emission SSP585 sce
nario than SSP245. This is also consistent with previous studies. For 
example, Wang et al. (2020) found an increasing change in wheat yield 
projection under increased CO2 conditions in different climatic regions, 
especially under SSP585 scenarios in the far future. This effect also 
further influences the probability of wheat yield loss and the drought 
index threshold, since without the fertilizer effect of CO2, wheat yields 
are more sensitive to drought under future climate change conditions, 
resulting in a higher probability of yield loss and higher DT values. 
Critically, this pattern of GCMs being the dominant source of uncer
tainty, followed by CO₂ effects, holds across different growth stages and 
time scales (Fig. S6). While the specific percentage contributions of each 
factor vary, there are no fundamental shifts in their relative importance.

Our multi-site explicit analysis of drought thresholds offers several 
actionable pathways for enhancing climate resilience for drought-prone 
regions, such as in the NSW wheat belt. For agricultural practitioners, 
the divergence between SPI and SPAWI thresholds underscores the ne
cessity of moving beyond rainfall-based drought monitoring. Farmers, 
particularly in high-risk regions, should adopt soil moisture-based de
cision support systems, using our identified SPAWI threshold as early- 
warning triggers for implementing drought management strategies 
during critical growth stages. Furthermore, the projected lowering of 
thresholds in certain areas under future climates signals an urgent need 

Table 3 
The median Kendall’s τ correlation coefficients between wheat yield and 
drought indices (SPI, SPAWI) during the grain filling stage across 27 GCMs in the 
study regions. All results were statistically significant at the p < 0.05 level.

Site Period SSP CO2 effects SPI SPAWI

WA 2040s SSP245 Without 0.546 0.594
With 0.554 0.592

SSP585 Without 0.544 0.582
With 0.57 0.584

2080s SSP245 Without 0.528 0.561
With 0.525 0.57

SSP585 Without 0.504 0.567
With 0.553 0.572

BA 2040s SSP245 Without 0.616 0.669
With 0.622 0.671

SSP585 Without 0.585 0.649
With 0.59 0.638

2080s SSP245 Without 0.641 0.659
With 0.642 0.659

SSP585 Without 0.564 0.649
With 0.577 0.627

MP 2040s SSP245 Without 0.55 0.61
With 0.548 0.603

SSP585 Without 0.541 0.601
With 0.544 0.6

2080s SSP245 Without 0.562 0.588
With 0.56 0.581

SSP585 Without 0.596 0.563
With 0.592 0.551

WW 2040s SSP245 Without 0.702 0.617
With 0.708 0.61

SSP585 Without 0.695 0.585
With 0.706 0.577

2080s SSP245 Without 0.716 0.636
With 0.719 0.617

SSP585 Without 0.681 0.61
With 0.703 0.587
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for long-term adaptation through the adoption of more drought-resilient 
crop varieties. Our findings also provide a scientific basis for policy
makers to allocate resources effectively. Investment in climate adapta
tion infrastructure, such as subsidies for soil moisture probes, should be 
prioritized in the vulnerable western sub-regions. Moreover, the quan
tified thresholds can serve as transparent and objective triggers for 
regionalized index-based insurance schemes, ensuring timely financial 
support to affected farmers while minimizing administrative costs. 
Finally, integrating these sub-regional thresholds into the state's agri
cultural extension services would enable a more precise and effective 
early-warning system, ultimately safeguarding Australia's food security 
in a changing climate.

Nonetheless, there are several limitations to our study. A key 
consideration is our reliance on a single crop model. While APSIM has 

been widely validated for wheat in Australia and provides a mechanis
tically consistent framework (Anwar et al., 2024; Chen et al., 2023; Tan 
et al., 2025), our findings are inherently influenced by its specific rep
resentations of soil hydrological processes and crop physiology (Ruane 
et al., 2021; Zheng and Zhang, 2025). Consequently, the use of a single 
model has limited our ability to quantify of structural uncertainty 
inherent in crop modelling (Wang et al., 2024a). Comparative studies, 
like those undertaken by the Agricultural Model Intercomparison and 
Improvement Project (AgMIP) (Rosenzweig et al., 2013), have shown 
that different models can produce a range of projections for drought 
impact due to variations in their core algorithms (Durand et al., 2018; 
Kimball et al., 2019; Sweet et al., 2025). Therefore, our results should be 
interpreted as a plausible trajectory within a broader spectrum of 
possible outcomes. Future research would benefit from employing a 

Fig. 5. Projected conditional probability of yield loss under drought conditions (SPI/SPAWI < − 1) in the 2040s and 2080s under the SSP245 and SSP585 at four 
study sites. The bar values represent the median conditional probability of 27 GCMs that passed the tests.

Fig. 6. Projected drought thresholds (DT) in the 2040s and 2080s under SSP245 and SSP585 scenarios at four study sites. The boundaries of the box represent the 
25th and 75th percentiles among 27 GCMs that passed the tests, while the whiskers below and above the box depict the 5th and 95th percentiles. Within each box, the 
black line shows the multi-model median. The orange and green dashed lines represent the thresholds of SPI and SPAWI for the baseline period, respectively.
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multi-model ensemble to better constrain this uncertainty and enhance 
the robustness of risk assessments. Moreover, the projected mitigating 
effect of elevated CO2 on yield loss carries significant uncertainty 
(Rezaei et al., 2023). While represented in APSIM according to current 
understanding, the realized CO2 fertilization effect in farmers' fields may 
be constrained by other factors, such as nitrogen limitation or ozone 
damage (Leung et al., 2022; Terrer et al., 2019). Consequently, our re
sults that include CO2 effects may represent a more optimistic scenario, 
and the risks under drought conditions could be even higher. In addi
tion, our analysis focused on drought as a primary stressor. We did not 
account for the effects of compound extreme events, such as heatwaves 
coinciding with drought, which are projected to increase in frequency 
and can have devastating, non-linear impacts on crop yields (Li et al., 
2025b). Incorporating compound hazard metrics and heat-damage 
functions within the crop model would likely sharpen risk estimates.

5. Conclusion

We assessed wheat yield loss risk and the change of drought-trigger 
thresholds with and without the impact of CO2 fertilization using a 
process-based crop model and the copula method. Our analysis dem
onstrates that future wheat yield loss risk is best captured by the agri
cultural drought index (SPAWI), which shows higher risk and thresholds 
than the meteorological index (SPI). While CO2 fertilization moderates 
risk by lowering drought thresholds, this effect is subject to significant 
climate model uncertainty. The spatial variation in thresholds un
derscores the need for region-specific adaptation strategies. Therefore, 

moving beyond meteorological indices to monitor soil water is essential 
for accurate risk assessment and developing targeted interventions to 
safeguard wheat production under climate change.
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