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A B S T R A C T

Climate change is intensifying drought risk and threatening food production, yet how drought-driven yield losses 
evolve with warming remains poorly quantified. Here, we combine an ensemble of nine crop models with 38 
global climate models to quantify shifting sensitivities of the irrigated–rainfed yield gap to key climate drivers 
across the Yellow River Basin under SSP126, SSP245, and SSP585. We find that yield gaps increase for maize, 
soybean, and rice under future climates, while wheat exhibits a slight decrease. The precipitation is negatively 
associated with the yield gap, but this negative effect weakens (shifts toward zero) across large areas of the basin. 
For maize, 69.8 %, 66.7 %, and 77.8 % of grid cells show increasing sensitivity under SSP126, SSP245, and 
SSP585, respectively. This indicates rainfall is becoming less effective at narrowing the gap as atmospheric 
demand rises, implying greater reliance on irrigation. Evapotranspiration (ET) generally shows the opposite 
spatial pattern, except in some extremely arid upstream areas where ET-yield gap coupling weakens or even 
decouples due to high atmospheric demand. Yield gap sensitivity to atmospheric CO2 is negative in most regions, 
consistent with improved water-use efficiency that reduces the yield gap; this effect is more pronounced in the 
arid upstream. By identifying spatiotemporal hotspots of intensifying yield-gap sensitivities, this study informs 
targeted irrigation investment and drought-time water-allocation prioritization, supporting climate-smart water 
management to stabilize production and long-term sustainability.

1. Introduction

Drought is one of the most critical climatic stresses threatening 
global food security (Krishnamurthy R et al., 2022). The increasing 
frequency and intensity of extreme drought events under climate change 
profoundly alter the hydrological cycle and reduce agricultural water 
availability (Allan et al., 2020; Greve and Seneviratne, 2015), thereby 
posing serious risks to crop production and food security (Wang et al., 

2024b). Irrigation plays a vital role in buffering drought impacts and 
sustaining crop yields (Wang et al., 2021). However, the expansion of 
irrigation and irrigated cropland can impact regional water cycles, water 
availability, and exacerbate pressure on limited freshwater resources 
(Mehta et al., 2024). Therefore, a better understanding of how climatic 
drought affects crop yields and the underlying driving factors is crucial 
for achieving sustainable irrigation management and improving water 
productivity (Bo et al., 2024; Zhang et al., 2021).
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Drought risk is projected to increase under climate change (Yao 
et al., 2020), further amplifying the likelihood of yield losses and 
dependence on irrigation. For instance, rising potential evapotranspi
ration (PET) accounts for approximately 60 % of the area experiencing 
heightened drought risk, driven by intensified interactions between soil 
moisture and atmospheric water demand in the Yellow River Basin 
(Wang et al., 2022b). However, on the other hand, increasing CO2 in
creases photosynthesis in crops (especially for C3 crops) by promoting 
Rubisco activity and reducing photorespiration, while also lowering 
stomatal conductance (Toreti et al., 2020). This process improves 
water-use efficiency (WUE) and can potentially compensate for drought 
stress (Swann et al., 2016). In addition, CO2 fertilization is crop-specific 
and is generally stronger for C3 crops (e.g., wheat, soybean, rice) than 
for C4 crops (e.g., maize), indicating CO2 and precipitation-driven 
changes in yield-gap sensitivity differ among crops. Thus, such coun
tervailing forces indicate that the coupling between climate and yield is 
evolving in space and time. Although some studies have explored the 
impacts of drought on crop productivity (Kamali et al., 2022; Santini 
et al., 2022), few studies have investigated how the sensitivity of crop 
yields to drought evolves with climate change. Clarifying these dy
namics is essential for reducing uncertainty in drought impact assess
ments and for developing strategies that guide the long-term sustainable 
management of agricultural irrigation.

To quantify drought impacts on crop yields in arid regions, some 
previous studies relied on statistical models using field survey or 
regional yield data (Li et al., 2022; Santini et al., 2022). However, these 
approaches may not fully capture drought risk because yield losses in 
irrigated areas are largely buffered. Process-based crop models have also 
been used to analyze the relationships between crop yields and drought 
indices (Chen et al., 2020; Leng and Hall, 2019), but such studies may 
underestimate drought impacts in irrigated regions where water supply 

partially mitigates stress. In contrast, the yield gap between irrigated 
and rainfed conditions provides a more direct measure of drought 
impact, reflecting how water limitation constrains potential yields under 
different drought intensities (Hou et al., 2024; Wang et al., 2021). This 
approach has been used to evaluate drought effects across various re
gions (Li and Troy, 2018). However, how the yield gap changes under 
climate change, what dominant factors influence it, and how these 
drivers evolve through time remain poorly understood, particularly in 
irrigated agricultural systems.

The Yellow River Basin (YRB) is China’s second-largest river basin, 
that largely located in arid and semi-arid zones. It is a national bread
basket that contributes around 13 % of China’s crop production while 
having only around 2 % of the country’s water resources (YRCC, 2019; 
Zhuo et al., 2022). Drought is one of the dominant natural hazards in the 
YRB, and much of its agriculture depends on irrigation (Wang et al., 
2025). Therefore, quantifying drought risk and identifying how specific 
climatic drivers that determine it are essential for developing sustain
able agricultural management and strengthening the Yellow River Ba
sin’s food-system resilience to drought.

Here, we combine an ensemble of nine process-based crop models 
with 38 global climate models to simulate irrigated and rainfed yields of 
maize, wheat, soybean, and rice across the Yellow River Basin under 
historical and Shared Socioeconomic Pathways (SSP) scenarios. We 
quantify drought impacts using the irrigated–rainfed yield gap, where 
irrigated yields represent no water stress and rainfed yields depend on 
precipitation; thus, the gap mainly reflects yield losses attributable to 
water limitation (drought stress). Key climatic drivers are identified by 
machine-learning attribution, and time-varying sensitivities are assessed 
with a dynamic linear model (Fig. 1). Our objectives are to: (1) project 
future crop yields under climate change; (2) estimate how the irrigated- 
rainfed yield gap changes over time; (3) identify the main climatic 

Fig. 1. Spatial characteristics of the study area (Yellow River Basin). a, Digital elevation model (DEM); b, land-use and land-cover distribution; c, spatial pattern of 
annual precipitation; d, spatial patterns of air temperature. Pr, precipitation; Temp, Temperature.

L. Li et al.                                                                                                                                                                                                                                        Agricultural Water Management 324 (2026) 110137 

2 



factors influencing the yield gap; and (4) reveal trends in crop yield 
sensitivity to these factors across scenarios. Our study offers a process- 
based perspective on how climatic drought affects crop yields, with 
clear implications for developing sustainable irrigation management 
and narrowing uncertainties about drought impacts on food production 
in irrigated agricultural regions.

2. Data and methods

2.1. Study area and data

The Yellow River Basin (YRB; 95◦53′E-119◦5′E; 32◦10′N-41◦50′N) in 
northern China spans arid, semi-arid, and semi-humid zones. It extends 
around 5464 km from headwaters on the Tibetan Plateau to the North 
China Plain and covers around 752,443 km2 (Niu et al., 2024). Precip
itation increases markedly from northwest to southeast, with mean 
annual total precipitation from 100 to 860 mm (Fig. 1). Mean annual air 
temperature ranges from about − 15 ◦C to 16 ◦C, generally decreasing 
from east to west with rising elevation. The basin is drought-prone, and 
stable crop production relies heavily on irrigation.

The observed climate data in this study were collected from Peng 
et al. (2019), developed by delta spatial downscaling of CRU time series 
with WorldClim climatology (bilinear interpolation). Observed gridded 
crop yields for maize, wheat, soybean, and rice were obtained from Cao 
et al. (2025), derived from multi-source inputs using machine-learning 
methods. Monthly precipitation and temperature under future climate 
scenarios were collected from CMIP6 with the 38 Global Climate Models 
(GCMs) under SSP126, SSP245, and SSP585 (Table S1). We used this 
large multi-model ensemble to span a wide range of crop-model struc
tures and CMIP6 climate projections, thereby capturing diverse repre
sentations of crop responses and climate uncertainty across the YRB. The 
selected CMIP6 GCMs were selected to span a wide range of equilibrium 
climate sensitivity (ECS) and associated hydroclimatic responses, 
including low-ECS models (e.g., NorESM2-MM), mid-range models (e.g., 
MPI-ESM1–2-LR), and high-ECS models (e.g., UKESM1–0-LL and 
HadGEM3-GC31-LL). All datasets were harmonized to a 5-arc-minute 
grid using bilinear resampling based on the high-resolution harvest-
area datasets (Monfreda et al., 2008; Portmann et al., 2010). Land-use 
change and socio-economic dynamics that may affect future irrigation 
capacity (e.g., infrastructure investment, technology adoption, and 
water-supply constraints) were not represented.

2.2. Global gridded crop model emulators

Future crop yields under climate change were projected using emu
lators of global gridded crop models (GGCMs) (Franke et al., 2020b). 
These emulators represent crop responses to carbon dioxide concen
tration (C), air temperature (T), water conditions (W; irrigation and 
precipitation), and nitrogen input (N) within a static framework that 
effectively reproduces yield changes across environmental conditions 
(Franke et al., 2020a, 2020b). Because our analysis focuses on 
drought-related yield impacts, nitrogen inputs were set to 200 kg N 
ha⁻¹ , with crop growth assumed to be free of nitrogen limitation. Our 
ensemble integrates nine crop models for wheat and maize (CARAIB, 
EPIC-TAMU, JULES, GEPIC, LPJ-GUESS, LPJmL, pDSSAT, PEPIC, 
PROMET) and eight for rice and soybean (CARAIB, EPIC-TAMU, JULES, 
GEPIC, LPJmL, pDSSAT, PEPIC, PROMET). The crop models are driven 
by outputs from 38 CMIP6 global climate models, spanning a wide range 
of climate sensitivities and precipitation–temperature trajectories 
(Meehl et al., 2020). Because the emulators are driven by relative 
changes in GCM variables, no bias correction of the GCM fields is 
required (Li et al., 2023a; Müller et al., 2021). The drought impact 
metric was estimated as the irrigated-rainfed yield difference (yield 
gap), which was used in all subsequent sensitivity analyses. To better 
reflect the spatial heterogeneity and temporal evolution of drought 
impacts across grids with different baseline productivity, we 

additionally present a rainfed-normalized yield-gap index for mapping 
and comparison: 

Ygap =
Yirrigated − Yrainfed

Yrainfed
× 100% (1) 

Where Ygap is the crop yield gaps, Yirrigated is the irrigated yield, and 
Yrainfed is the rainfed yield. We normalized the yield gaps by rainfed- 
yield to facilitate spatial comparison across grids with different base
line productivity and to retain an intuitive interpretation in which larger 
values indicate stronger relative water limitation (i.e., larger propor
tional irrigation benefits). In this study, we use the yield-gap/Yrainfed 
(rather than yield-gap/Yirrigated) because rainfed yield provides a locally 
relevant water-limited baseline, making the ratio easier to interpret as 
drought-related yield loss relative to local rainfed conditions. Note that 
this normalized index is used to present the spatiotemporal patterns of 
yield-gap evolution, whereas the attribution and sensitivity analyses are 
based on the absolute yield difference. Moreover, in this framework, the 
yield gap is interpreted as a biophysical indicator of water-limitation 
alleviation under irrigation; socio-economic constraints on irrigation 
capacity (e.g., irrigation policy or infrastructure limitations) are not 
represented and may confound real-world reliance.

2.3. Statistical downscaling

Since the 38 GCMs have coarse resolution, we applied statistical 
downscaling to better resolve relationships between the yield gap and 
climatic drivers. Monthly GCM outputs were first bilinearly resampled 
to a 5-arc-minute grid and then bias-corrected using the delta method. 
We first bilinearly resampled each GCM field to 5-arc-minute. Bias 
correction used the delta method relative to 1980–2010, treating vari
ables additively within the growth season. For each variable X(tem
perature or precipitation), the monthly bias was computed as 

D=XGCMs-Xobs                                                                                (2)

and the bias-corrected (downscaled) field was obtained as 

XSD=XGCMs-D                                                                                   (3)

Where XGCM is the temperature or precipitation from the GCM out
puts; Xobs denotes temperature or precipitation from the observed 
dataset (Peng et al., 2019); XSD is the statistically downscaled data.

Because GGCM emulator baseline yields differ from observation- 
based yields, we applied a yield bias correction to align absolute base
line yield levels with observed data. Emulator outputs were first bili
nearly resampled from 0.5◦× 0.5◦ to a 5-arc-minute grid. For each crop 
model, we then computed fractional yield changes between the baseline 
(1982–2010) and each future period (2021–2099) and applied these 
factors to the observational reference yields to generate bias-corrected 
projections (Jägermeyr et al., 2021). Details of the observed yield 
dataset are provided in Cao et al. (2025).

2.4. Statistical models

2.4.1. The random forest
We used a random forest (RF) model to identify the dominant drivers 

of the yield gap, considering atmospheric CO₂, standardized precip
itation–evapotranspiration index (SPEI), precipitation, and ET (calcu
lated using the Thornthwaite 1948 method). RF can capture both linear 
and nonlinear relationships between predictors and responses (Breiman, 
2001; Feng et al., 2019). In this study, a random forest model was fitted 
for each grid cell in R (version 4.1.1; R Core Team; R Foundation for 
Statistical Computing, Vienna, Austria), and variable-importance values 
were normalized to sum to 100 %. We assessed the dominant impact 
factors for the baseline (1980–2010) and the future period (2069–2099) 
across SSP126, SSP245, and SSP585. Random forest models were fitted 
separately for each grid cell to quantify the relative importance of 
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climatic drivers. Because hyperparameter tuning for each cell is 
computationally infeasible at this scale, we adopted stable default set
tings (mtry=3, ntree=500), which are sufficient for robust importance 
ranking in regression applications.

2.4.2. Dynamic linear model
The random forest model identifies the magnitude of each driver’s 

contribution to the yield gap but does not provide the direction of effect 
at each grid cell (positive versus negative). To quantify directional, time- 
varying effects, we employ a dynamic linear model (DLM), which esti
mates the sensitivity of crop yield gaps to individual climatic variables. 
Compared with a standard multiple linear regression, the DLM accom
modates time-varying coefficients and temporal dependence in the re
siduals, making it well suited to time-series regression (Prado and West, 
2010). This allows us to reveal trends in the sensitivity of irriga
ted–rainfed yield gaps to precipitation, temperature, SPEI, and CO2 
under changing climate conditions. The DLM has been applied widely in 
Earth system science, environmental change, and agriculture (Li et al., 
2023b; Liu et al., 2019; Zhang et al., 2022). We fit a separate DLM for 
each grid cell for the baseline (1980–2010) and the future period 
(2069–2099) across SSP126, SSP245, and SSP585, consistent with the 
RF. To quantify long-term changes, we also test for linear trends in 
sensitivities expressed per decade (10a) during 1980–2099 under 
SSP126, SSP245, and SSP585. Since all climatic factors are included 

jointly in the DLM, the estimated sensitivities quantify conditional 
marginal effects on the yield gap, rather than isolated single-factor re
sponses. Consequently, co-variability among predictors may influence 
individual coefficients through shared variance and should be consid
ered when interpreting single-variable sensitivities. Although the RF 
attribution and the DLM are well-suited for this study, dominant-driver 
identification and sensitivity estimates may still involve methodological 
uncertainty. An inter-method comparison and uncertainty analysis 
across different statistical models (e.g., multiple linear regression and 
other machine-learning approaches) is beyond the scope of this work but 
represents valuable directions for future study.

Generally, using the methods described above, we quantified 
changes in the yield gap under future scenarios and revealed trends in its 
sensitivity to climatic drivers. This modeling and analytical framework 
is transferable to other irrigated regions, provided that comparable 
irrigated and rainfed yield estimates and climate-driver data are avail
able. An overview of the analytical methodology is shown in Fig. 2.

3. Results

3.1. Projected crop yield change

We projected spatial patterns of crop yields for 2069–2099 relative to 
the baseline (1980–2010) under SSP126, SSP245, and SSP585 in the 

Fig. 2. Overview of the analytical framework for quantifying drought impacts on crop yields and their climatic attribution under climate change. Pr, precipitation; 
Temp, temperature; ET, evapotranspiration; CO2, atmospheric carbon dioxide; Irr, irrigated; rf, Rainfed; SSP, Shared Socioeconomic Pathway; GCM, Global 
climate model.
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YRB. Maize yield exhibits basin-wide declines under SSP245 and 
SSP585, with reductions strengthening from SSP126 to SSP585 and from 
northwest to southeast (Fig. 3a). For wheat, spring wheat generally 
declines under climate change, especially in the northern YRB (e.g., the 
Hetao Irrigation District), but winter wheat yield tends to increase under 
climate change. The time series indicates that maize yield increases 
slightly before 2040 s, then will declines reaching 0–15 % (SSP126), 
1.0–22.6 % (SSP245), and 11.2–35.5 % (SSP585) compared with base
line by 2099 (Fig. 3b). Wheat yield increases through mid-century, but 
the rate slows after 2040 s, and under SSP585 yields begin to decline 
after the 2070 s. By 2099, wheat yield changes range around 
− 2.8–6.8 % (SSP126), − 6.5–9.6 % (SSP245), and − 15.0–4.8 % 
(SSP585) compared to 1980–2010. Spatiotemporal patterns for soybean 
and rice are shown in Figure S1. Soybean yield generally increases in the 
western and northeastern YRB but decreases in the middle and lower 
reaches, with pronounced losses downstream under SSP585; rice oc
cupies limited areas in the YRB but exhibits substantial declines under 
climate change.

3.2. Projected crop yield gap change

Because total yield change under climate change integrates multiple 
influences (precipitation, temperature, and CO2 effect), it is difficult to 
isolate water limitation from yield changes alone. Therefore, we use the 
irrigated–rainfed yield gap to quantify drought-induced yield losses 
(Figures 4 and S2). The spatial patterns of yield-gap change differ from 
those of total yield change. For all four crops, yield gaps generally 
decrease from the upper to the lower reaches of the YRB, highlighting 
upstream drought-limitation hotspots (Figures 4 and S2). Across 
different scenarios, maize and soybean show the largest gaps under 
SSP585, followed by SSP245 and SSP126 (Figure 4b and S2b). Wheat 
exhibits a weaker or mixed scenario signal, whereas rice shows the 
largest increases under SSP585, followed by SSP126 and SSP245. Time- 
series results (1980–2099) indicate increasing yield gaps for maize and 
soybean with rates ordered SSP585 > SSP245 > SSP126; wheat 
decrease through mid-century and then increases after around 
2040–2050.

3.3. Sensitivity analysis

3.3.1. Relative importance of different climate variables
To identify the dominant drivers of the yield gap under water limi

tation, we quantified the contributions of precipitation, ET, SPEI, and 
CO2 to quantifying the contribution of each variable to yield gap. Pre
cipitation represents water supply; ET serves as a proxy for atmospheric 
water demand; SPEI integrates supply and demand to indicate drought 
intensity; and CO2 can modulate photosynthesis and water-use effi
ciency (WUE), especially in C3 crops. For maize and soybean, SPEI is the 
main factor (Figure 5 and S4), although its importance declines from 
SSP126 to SSP585. Precipitation also exerts a strong influence, partic
ularly under SSP126. The importance of CO₂ increases from SSP126 to 
SSP585, consistent with a potential CO2-driven increase in crop water- 
use efficiency (WUE), with a larger increase for wheat and soybean 
than for maize. For spring wheat, precipitation dominates the yield gap 
and tends to strengthen in 2069–2099 under SSP126 and SSP245, but 
weakens under SSP585. For winter wheat, SPEI dominates in the base
line and declines in 2069–2099 under SSP126 and SSP245 (Figure S3). 
Across different crops, ET shows relatively higher importance in the 
baseline (1980–2010) and under SSP585 (2069–2099), but lower 
importance under SSP126 and SSP245. Although rice occupies limited 
areas in the YRB, its yield gap is mainly driven by precipitation and CO2; 
the relative importance of CO2 increases in the future, but the impor
tance of precipitation declines, and ET increases the influence of the rice 
yield gap (Figure S5).

3.3.2. Trends in climatic sensitivity of yield gaps
To assess how climate drives drought-related yield losses, we esti

mated the climatic sensitivity of the yield gap with the DLM (Figure S6- 
S9). Sensitivities are generally small in the historical period, consistent 
with a milder climate state and variability that kept crops farther from 
stress. In contrast, the rate and magnitude of climate change are ex
pected to intensify over the coming decades, especially in 2069–2099, 
leading to greater sensitivities (Li et al., 2019; Wang et al., 2022a; Yao 
et al., 2020). In the future period, precipitation is mostly negative with 
the yield gap (more rain with a smaller gap), and its magnitude tends to 
weaken under SSP585, particularly in the upstream of the YRB. ET 

Fig. 3. Relative changes in crop yields from 1980 to 2099 in the Yellow River Basin under climate change. a, Spatial patterns of maize and wheat yield changes 
during 2069–2099 compared with the baseline period (1980–2010) under SSP126, SSP245, and SSP585 scenarios. b, Time series of maize and wheat yield changes 
from 1980 to 2099. Shaded areas represent the 20th-80th percentile range across 38 global climate models (GCMs) and nine crop models.
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shows a positive association with the yield gap (higher atmospheric 
demand with larger gap), strongest under SSP245 and weaker under 
SSP126 and SSP585. SPEI is generally negatively associated with the 
yield gap, especially for maize, but it exhibits pronounced spatial het
erogeneity across the basin (Figure S7). CO2 sensitivities are also 
negative, indicating that higher CO2 (via improved WUE) reduces the 
yield gap. Notably, CO2 sensitivity is strongest under SSP245 during 
2069–2099 (Figure S6-S9), likely because CO2 increases are modest 
under SSP126, whereas under SSP585, CO2 may exceed the range where 
CO2 fertilization continues to increase strongly.

We also evaluated trends in sensitivity over 1980–2099 across sce
narios Fig. 6). The yield-gap sensitivity to precipitation increases over 
most of the basin, with localized decreases mainly in the downstream 
YRB. Note that because the precipitation-yield gap relationship is 
negative, an increasing trend indicates a weakening in the absolute 
magnitude of sensitivity (shifts toward zero). The area fractions showing 
increasing trends are around 69.7 %, 66.7 %, and 77.8 % under SSP126, 
SSP245, and SSP585, respectively (Fig. 6b). In contrast, ET shows 
largely opposite patterns, with decreasing trends over approximately 
65.8 %, 60.6 %, and 53.7 % of the YRB under SSP126, SSP245, and 
SSP585, respectively. For example, in the downstream YRB, the pre
cipitation sensitivity shows a slight decreasing trend, whereas ET shows 
a pronounced increasing trend. The SPEI trend generally declines over 
most regions-about 67.4 %, 61.7 %, and 64.7 % show decreasing trends 
under SSP126, SSP245, and SSP585, with increases primarily concen
trated in the western YRB. For CO2, most areas display decreasing trends 
(approximately 70.5 %, 84.3 %, and 92.8 % under SSP126, SSP245, and 
SSP585), and the trend magnitude tends to increase from the western 
toward the eastern YRB.

For the other crops (wheat, soybean, and rice), spatial-temporal 
patterns similar to those of maize (Figs. S10-S12). For wheat, precipi
tation sensitivity shows increasing trends over 61.9 %, 55.5 %, and 
64.3 % of the YRB under SSP126, SSP245, and SSP585, respectively, 
while ET sensitivity shows decreasing trends over 73.8 %, 69.9 %, and 
66.6 %. SPEI sensitivity generally decreases across most regions 
(77.8 %, 73.1 %, and 65.8 % with decreasing trends under SSP126, 
SSP245, and SSP585), and CO2 sensitivity also decreases in around 
87–90 % of the basin across scenarios. A notable exception is soybean, 
for which ET sensitivity increases across most regions.

3.4. Uncertainty of yield gap predictions

To summarize uncertainty across the ensemble, we use the coeffi
cient of variation (CV) to characterize spread in the irrigated-rainfed 
yield gap (Fig. 7). Spatially, maize shows higher CV in the southern 
YRB, whereas wheat uncertainty is greater toward the western basin. For 
time series, maize CV declines steadily from around 0.76–0.78 in the 
historical period to around 0.65–0.75 by the late century among the 
three scenarios. It is perhaps because, as systems become increasingly 
water-limited, responses across models become more similar. In 
contrast, wheat exhibits a U-shaped change into mid-century and then 
rises after around 2060, with the largest late-century increase under 
SSP585 (from around 0.52–0.54–0.56–0.66, among three scenarios). For 
soybean and rice, CV also tends to decrease toward the end of the cen
tury (Figure S13). Notably, CV provides an overall measure of ensemble 
spread but does not separate the relative contributions of crop models, 
climate models, or their interactions, and we did not apply uncertainty- 
constraining approaches in this study.

4. Discussion

4.1. Climate change impact on food security

Our study projects high-resolution crop yield changes in the YRB and 
finds substantial declines under climate change, especially under 
SSP585. Since the recent climate trajectory most closely tracks SSP585 

(Schwalm et al., 2020), avoiding impacts will require aggressive adap
tation to increase the resilience of the food system (Peng and Guan, 
2021). For maize, soybean, and rice, the irrigated-rainfed yield gap in
creases under different scenarios (Fig. 4 and Figure S2), indicating 
heightened drought risk. In the future period, the drought and heat risks 
substantially increased (Li et al., 2019; Xu et al., 2024), making irriga
tion essential for food security and buffer effects by providing 
on-demand water and mitigating dry-heat stress via sustained transpi
ration and canopy cooling (Wang et al., 2021; Yao et al., 2025a). In 
contrast, wheat shows a weaker and mixed scenario signal, likely 
because winter and spring wheat grow in different seasons and therefore 
experience different seasonal precipitation changes. Winter wheat 
shows a slight reduction in the yield gap, likely because it grows during 
the cool season when ET is lower and projected precipitation increases 
can buffer water stress, even as mean temperature increases. Spring 
wheat shows slightly increasing yield gaps because warming intensifies 
hot, dry conditions in late spring and summer, increasing drought risk. 
Such spatial patterns are generally consistent with previous crop-yield 
projection studies (Hou et al., 2024; Wei et al., 2025), although the 
magnitudes differ, likely due to differences in the crop and climate 
models used.

4.2. Climatic sensitivity to yield gaps

We assessed the relative importance of climatic drivers and found 
clear spatial heterogeneity: different regions are dominated by different 
variables in explaining the irrigated-rainfed yield gap. In the upstream 
of YRB (e.g., the Hetao Irrigation District), ET is the dominant factor. It is 
perhaps because high Vapor Pressure Deficit (VPD) and relatively low 
precipitation limit recharge of root-zone soil moisture from rainfall. 
Moreover, widespread soil salinity further reduces plant-available 
water, making production heavily dependent on irrigation (Sun et al., 
2016; Zhao et al., 2025). For different scenarios, ET is projected to in
crease with warming, especially under SSP585 (Kim et al., 2021). Thus, 
in irrigation-dependent areas, ET increases the dominance of the yield 
gap (Fig. 5 and Figure S3-S5). Consequently, food production in these 
regions will increasingly rely on irrigation. In the middle reaches of the 
YRB, precipitation dominates the yield gap. It is because the summer 
monsoon impacts the timing and amount of root-zone recharge, with 
relatively low VPD (Liu et al., 2021), that rainfall anomalies have a more 
effective impact on crop growth. In addition, the soil-hydrologic setting, 
particularly in the eastern YRB, exhibits higher θs (saturated water 
content) and moderate θr (residual water), indicating a higher field 
capacity and likely larger plant-available water than the salinized soil of 
Hetao (Tong et al., 2024). Thus, precipitation is converted more effi
ciently into root-zone recharge. Under the SSP126 and SSP245, pre
cipitation remains the dominant control because the increase in 
potential evaporative demand is modest, and ET does not become the 
binding constraint (Collignan et al., 2023; Rouholahnejad Freund and 
Kirchner, 2017). Consequently, changes in the aridity index (PET/P) are 
small and largely precipitation-driven, and ET is not the binding 
constraint in these scenarios. In the lower YRB, where rainfall is more 
abundant and high infiltration (Li et al., 2020), and loam-silt-loam soils 
provide substantial plant-available storage (Zhao et al., 2017). There
fore, the irrigated-rainfed yield gaps are smaller than in other regions, 
and the SPEI can better explain their variability than precipitation or ET 
al.one. Because both water supply (e.g., precipitation) and atmospheric 
demand (e.g., ET) are relatively high, precipitation or ET by themselves 
cannot represent crop water status. Generally, identifying the dominant 
factors by region can help better understand how drought risk affects 
and more accurately interpret scenario-dependent impacts on yields.

The sensitivity of the irrigated-rainfed yield gap to climate drivers is 
dynamic under climate change. For precipitation, the negative sensi
tivity weakens (shifts toward zero) in much of the upper YRB, where the 
yield gap is largest, indicating a weakened marginal influence of rainfall 
on narrowing the gap. In the arid upstream, sodic (saline-sodic) soils 
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have lower infiltration capacity and plant-available water, while rising 
VPD accelerates post-rain soil-water drawdown, and such processes 
make rainfall less effective at recharging the root zone (Shrivastava and 
Kumar, 2015; Yuan et al., 2019). At the same time, higher atmospheric 
demand drives more soil evaporation from rainfall at the expense of 
root-zone recharge and transpiration, resulting in a concurrent decline 
in the marginal influence of both precipitation and ET on the yield gaps 
(Stoy et al., 2019; Zhang et al., 2017). Therefore, under these conditions, 
SPEI can integrate supply and demand, which more effectively captures 
the water conditions ((Fig. 6). By contrast, parts of the middle and lower 
YRB show a decreasing trend in precipitation sensitivity (more nega
tive), indicating stronger precipitation-yield coupling and greater po
tential for rainfall to moderate the yield gap. In these regions, higher 
soil-water storage and increasing precipitation more effectively trans
late into root-zone moisture (Liu et al., 2024; Zhou et al., 2021). In 
addition, the increasing CO2 can enhance plant growth while partially 
closing stomata, increasing water-use efficiency (WUE) that can improve 
the productivity return per millimeter of rain, especially in C3 crops 
(Adams et al., 2021; Haverd et al., 2020; Toreti et al., 2020). Notably, 
the CO2 fertilization signal is stronger in the arid upper basin (Fig. 6), 
where growth is most water-limited. Under such conditions, higher CO2 
raises WUE and allows each millimeter of rainfall to get a larger pro
ductivity gain than in less water-limited regions (Donohue et al., 2013; 
Zhang et al., 2022). However, our results indicate that the crop yield 
benefits from increased WUE have likely been offset by the 

intensification of drought in these regions. In addition, the benefit of 
CO2-induced water savings depends on concurrent changes in evapo
transpiration (ET) and atmospheric demand, which reflect coupled 
vegetation–climate interactions and are strongly regulated by multiple 
climatic drivers (Nkiaka et al., 2024).

4.3. Potential implications for sustainable development

Although irrigation is essential for food security (Rosa et al., 2020), it 
can increase greenhouse gas emissions directly from soils and indirectly 
from energy use, which highlights the need for sustainable irrigation 
(Yang et al., 2023). As climate change expands drought risk and reliance 
on irrigation, net atmospheric water influx to land may decline and 
potentially aggravate drought trends due to increased irrigation (Yao 
et al., 2025b). Therefore, targeted strategies are needed to mitigate these 
trade-offs. The spatial variability of ET under warming reflects shifts 
between water-limited and energy-limited regimes: in arid, 
water-limited regions, ET is constrained mainly by soil moisture and 
water supply, whereas in more energy-limited regions it responds more 
to available energy and moisture conditions (Nkiaka et al., 2024). Thus, 
these contrasts highlight the need for region-specific adaptation strate
gies. For example, in ET-dominated regions, shifting from continuous 
flooding and high-loss systems to alternate wetting and drying or 
mid-season drainage in rice, and from sprinkler to drip or 
micro-irrigation in upland crops, can reduce emissions while 

Fig. 4. Irrigated–rainfed yield gap for maize and wheat in the Yellow River Basin under historical and future climate scenarios based on the multi-model ensemble. a, 
Spatial patterns of yield gaps during the historical period (1980–2010) and future period (2069–2099) under SSP126, SSP245, and SSP585 scenarios. b, Density 
distributions of yield gaps for maize and wheat under different climate scenarios. c, Time series of yield gap changes from 1980 to 2099 for maize and wheat.
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maintaining yields (Kuang et al., 2021). In precipitation-dominated re
gions, invest in effective rainfall on-farm storage, in-field retention, soil 

structure, and apply key-stage supplemental irrigation when precipita
tion sensitivity is strongest. In addition, crop switching guided by our 

Fig. 5. Relative importance (%) of precipitation (Pr), evapotranspiration (ET), standardized precipitation-evapotranspiration index (SPEI), and atmospheric carbon 
dioxide concentration (CO2) in explaining maize yield gap under the baseline (1980–2010) and future period (2069–2099) for SSP126, SSP245, and 
SSP585 scenarios.

Fig. 6. Trends in the sensitivity of maize yield gaps to key climatic variables. a, Spatial patterns of the trends in maize yield gap sensitivity to precipitation (Pr), 
evapotranspiration (ET), standardized precipitation-evapotranspiration index (SPEI), and atmospheric carbon dioxide concentration (CO2) under SSP126, SSP245, 
and SSP585 scenarios. b, Proportions of areas showing increasing or decreasing sensitivity. c, Mean sensitivity trends within regions of increase and decrease.
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dominance maps can raise production while advancing sustainability 
co-benefits by reallocating planting toward climates where each crop's 
water climate sensitivities are more favorable (Chakraborti et al., 2023; 
Xie et al., 2023). Generally, by mapping where yield gaps expand and 
where sensitivities and their trends are strongest, together with regional 
dominance of key drivers, our results provide spatially explicit evidence 
to prioritize where and when irrigation and water-saving interventions 
are likely to be most effective, with potential co-benefits for reducing the 
greenhouse-gas intensity of production.

4.4. Limitations and way forward

This study has several limitations. First, extreme events can strongly 
affect yields, but we did not examine yield-gap sensitivity to specific 
extremes such as waterlogging (Kim et al., 2024) or flash drought (Otkin 
et al., 2018). Using growing-season means may mask short, high-impact 
episodes that alter the relationship between climate variables and the 
irrigated-rainfed gap. Second, crop yield projections still have large 
uncertainty (Li et al., 2023a; Müller et al., 2021) from climate models, 
process-based crop models, and their interaction(Wang et al., 2024a), 
which may affect the magnitude of projected yield-gap changes and 
sensitivity trends. In addition, the emulator-based climate-response 
functions are represented with saturating relationships, indicating the 
potential diminishing marginal effects at high driver levels. Conse
quently, under stronger forcing, further increases in climatic drivers 
may yield smaller incremental changes in the yield gap, affecting the 
magnitude of scenario-dependent sensitivities. Third, while sustainable 
irrigation under climate change can advance the Sustainable Develop
ment Goals (SDGs), we did not evaluate specific irrigation strategies or 
their net greenhouse gas outcomes in this work. Our future study could 
focus on co-design and test sustainable irrigation portfolios that main
tain yields under climate change while reducing greenhouse gas emis
sions, linking our sensitivity trend maps to actionable scheduling, 
technology choices, and policy instruments (McDermid et al., 2023; 
Yang et al., 2023; Zhang et al., 2021). Future work could also better 
represent short-term extremes by integrating sub-seasonal modeling or 
weather-generator outputs to simulate high-impact events (e.g., heat, 
flash droughts, and waterlogging) within the growing season. In addi
tion, since soil organic carbon can buffer yield losses under warming 
(Feng et al., 2022; He et al., 2025), an important direction is to assess 
whether soil profile properties and carbon management can further 

mitigate drought risk under future climates.

5. Conclusion

This study uses the irrigated–rainfed yield gap to quantify drought 
risk in the Yellow River Basin under climate change. We estimate yield- 
gap sensitivities to key climatic drivers (precipitation, evapotranspira
tion, SPEI, and CO₂) and show that these sensitivities shift over time 
across SSP126, SSP245, and SSP585. Combined with projected crop 
yield changes and evolving irrigated-rainfed yield gaps, our results 
identify where drought-related yield losses are likely to intensify and 
where climatic impacts on the yield gap are strengthening or weakening. 
These spatial hotspots provide clear targets for locally adapted, scenario- 
aware irrigation and water-management planning. Since drought risk is 
increasing due to climate change, especially in the YRB, which depends 
heavily on irrigation, decision-makers need strategies that both improve 
resilience and support sustainable management. Our results provide 
spatially explicit evidence to support the prioritization of adaptation 
planning and to inform where and when irrigation is likely to deliver the 
greatest benefit, rather than prescribing operational “rules” directly. In 
particular, the sensitivity trend maps can help identify regions and pe
riods in which supplemental water is most strongly associated with 
narrowing yield gaps, providing a quantitative basis for scenario-aware 
water management planning. These insights can potentially contribute 
to increasing the efficiency of climate-smart practices that stabilize 
production while advancing long-term sustainability goals.
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