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Climate change is intensifying drought risk and threatening food production, yet how drought-driven yield losses
evolve with warming remains poorly quantified. Here, we combine an ensemble of nine crop models with 38
global climate models to quantify shifting sensitivities of the irrigated-rainfed yield gap to key climate drivers
across the Yellow River Basin under SSP126, SSP245, and SSP585. We find that yield gaps increase for maize,
soybean, and rice under future climates, while wheat exhibits a slight decrease. The precipitation is negatively
associated with the yield gap, but this negative effect weakens (shifts toward zero) across large areas of the basin.
For maize, 69.8 %, 66.7 %, and 77.8 % of grid cells show increasing sensitivity under SSP126, SSP245, and
SSP585, respectively. This indicates rainfall is becoming less effective at narrowing the gap as atmospheric
demand rises, implying greater reliance on irrigation. Evapotranspiration (ET) generally shows the opposite
spatial pattern, except in some extremely arid upstream areas where ET-yield gap coupling weakens or even
decouples due to high atmospheric demand. Yield gap sensitivity to atmospheric CO3 is negative in most regions,
consistent with improved water-use efficiency that reduces the yield gap; this effect is more pronounced in the
arid upstream. By identifying spatiotemporal hotspots of intensifying yield-gap sensitivities, this study informs
targeted irrigation investment and drought-time water-allocation prioritization, supporting climate-smart water
management to stabilize production and long-term sustainability.

1. Introduction

2024b). Irrigation plays a vital role in buffering drought impacts and
sustaining crop yields (Wang et al., 2021). However, the expansion of

Drought is one of the most critical climatic stresses threatening
global food security (Krishnamurthy R et al., 2022). The increasing
frequency and intensity of extreme drought events under climate change
profoundly alter the hydrological cycle and reduce agricultural water
availability (Allan et al., 2020; Greve and Seneviratne, 2015), thereby
posing serious risks to crop production and food security (Wang et al.,
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irrigation and irrigated cropland can impact regional water cycles, water
availability, and exacerbate pressure on limited freshwater resources
(Mehta et al., 2024). Therefore, a better understanding of how climatic
drought affects crop yields and the underlying driving factors is crucial
for achieving sustainable irrigation management and improving water
productivity (Bo et al., 2024; Zhang et al., 2021).
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Drought risk is projected to increase under climate change (Yao
et al., 2020), further amplifying the likelihood of yield losses and
dependence on irrigation. For instance, rising potential evapotranspi-
ration (PET) accounts for approximately 60 % of the area experiencing
heightened drought risk, driven by intensified interactions between soil
moisture and atmospheric water demand in the Yellow River Basin
(Wang et al., 2022b). However, on the other hand, increasing CO; in-
creases photosynthesis in crops (especially for Cs crops) by promoting
Rubisco activity and reducing photorespiration, while also lowering
stomatal conductance (Toreti et al., 2020). This process improves
water-use efficiency (WUE) and can potentially compensate for drought
stress (Swann et al., 2016). In addition, CO fertilization is crop-specific
and is generally stronger for C3 crops (e.g., wheat, soybean, rice) than
for C4 crops (e.g., maize), indicating CO2 and precipitation-driven
changes in yield-gap sensitivity differ among crops. Thus, such coun-
tervailing forces indicate that the coupling between climate and yield is
evolving in space and time. Although some studies have explored the
impacts of drought on crop productivity (Kamali et al., 2022; Santini
et al., 2022), few studies have investigated how the sensitivity of crop
yields to drought evolves with climate change. Clarifying these dy-
namics is essential for reducing uncertainty in drought impact assess-
ments and for developing strategies that guide the long-term sustainable
management of agricultural irrigation.

To quantify drought impacts on crop yields in arid regions, some
previous studies relied on statistical models using field survey or
regional yield data (Li et al., 2022; Santini et al., 2022). However, these
approaches may not fully capture drought risk because yield losses in
irrigated areas are largely buffered. Process-based crop models have also
been used to analyze the relationships between crop yields and drought
indices (Chen et al., 2020; Leng and Hall, 2019), but such studies may
underestimate drought impacts in irrigated regions where water supply
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partially mitigates stress. In contrast, the yield gap between irrigated
and rainfed conditions provides a more direct measure of drought
impact, reflecting how water limitation constrains potential yields under
different drought intensities (Hou et al., 2024; Wang et al., 2021). This
approach has been used to evaluate drought effects across various re-
gions (Li and Troy, 2018). However, how the yield gap changes under
climate change, what dominant factors influence it, and how these
drivers evolve through time remain poorly understood, particularly in
irrigated agricultural systems.

The Yellow River Basin (YRB) is China’s second-largest river basin,
that largely located in arid and semi-arid zones. It is a national bread-
basket that contributes around 13 % of China’s crop production while
having only around 2 % of the country’s water resources (YRCC, 2019;
Zhuo et al., 2022). Drought is one of the dominant natural hazards in the
YRB, and much of its agriculture depends on irrigation (Wang et al.,
2025). Therefore, quantifying drought risk and identifying how specific
climatic drivers that determine it are essential for developing sustain-
able agricultural management and strengthening the Yellow River Ba-
sin’s food-system resilience to drought.

Here, we combine an ensemble of nine process-based crop models
with 38 global climate models to simulate irrigated and rainfed yields of
maize, wheat, soybean, and rice across the Yellow River Basin under
historical and Shared Socioeconomic Pathways (SSP) scenarios. We
quantify drought impacts using the irrigated-rainfed yield gap, where
irrigated yields represent no water stress and rainfed yields depend on
precipitation; thus, the gap mainly reflects yield losses attributable to
water limitation (drought stress). Key climatic drivers are identified by
machine-learning attribution, and time-varying sensitivities are assessed
with a dynamic linear model (Fig. 1). Our objectives are to: (1) project
future crop yields under climate change; (2) estimate how the irrigated-
rainfed yield gap changes over time; (3) identify the main climatic
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Fig. 1. Spatial characteristics of the study area (Yellow River Basin). a, Digital elevation model (DEM); b, land-use and land-cover distribution; c, spatial pattern of
annual precipitation; d, spatial patterns of air temperature. Pr, precipitation; Temp, Temperature.
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factors influencing the yield gap; and (4) reveal trends in crop yield
sensitivity to these factors across scenarios. Our study offers a process-
based perspective on how climatic drought affects crop yields, with
clear implications for developing sustainable irrigation management
and narrowing uncertainties about drought impacts on food production
in irrigated agricultural regions.

2. Data and methods
2.1. Study area and data

The Yellow River Basin (YRB; 95°53'E-119°5'E; 32°10'N-41°50'N) in
northern China spans arid, semi-arid, and semi-humid zones. It extends
around 5464 km from headwaters on the Tibetan Plateau to the North
China Plain and covers around 752,443 km? (Niu et al., 2024). Precip-
itation increases markedly from northwest to southeast, with mean
annual total precipitation from 100 to 860 mm (Fig. 1). Mean annual air
temperature ranges from about —15 °C to 16 °C, generally decreasing
from east to west with rising elevation. The basin is drought-prone, and
stable crop production relies heavily on irrigation.

The observed climate data in this study were collected from Peng
et al. (2019), developed by delta spatial downscaling of CRU time series
with WorldClim climatology (bilinear interpolation). Observed gridded
crop yields for maize, wheat, soybean, and rice were obtained from Cao
et al. (2025), derived from multi-source inputs using machine-learning
methods. Monthly precipitation and temperature under future climate
scenarios were collected from CMIP6 with the 38 Global Climate Models
(GCMs) under SSP126, SSP245, and SSP585 (Table S1). We used this
large multi-model ensemble to span a wide range of crop-model struc-
tures and CMIP6 climate projections, thereby capturing diverse repre-
sentations of crop responses and climate uncertainty across the YRB. The
selected CMIP6 GCMs were selected to span a wide range of equilibrium
climate sensitivity (ECS) and associated hydroclimatic responses,
including low-ECS models (e.g., NorESM2-MM), mid-range models (e.g.,
MPI-ESM1-2-LR), and high-ECS models (e.g., UKESM1-0-LL and
HadGEM3-GC31-LL). All datasets were harmonized to a 5-arc-minute
grid using bilinear resampling based on the high-resolution harvest--
area datasets (Monfreda et al., 2008; Portmann et al., 2010). Land-use
change and socio-economic dynamics that may affect future irrigation
capacity (e.g., infrastructure investment, technology adoption, and
water-supply constraints) were not represented.

2.2. Global gridded crop model emulators

Future crop yields under climate change were projected using emu-
lators of global gridded crop models (GGCMs) (Franke et al., 2020b).
These emulators represent crop responses to carbon dioxide concen-
tration (C), air temperature (T), water conditions (W; irrigation and
precipitation), and nitrogen input (N) within a static framework that
effectively reproduces yield changes across environmental conditions
(Franke et al., 2020a, 2020b). Because our analysis focuses on
drought-related yield impacts, nitrogen inputs were set to 200 kg N
ha™!, with crop growth assumed to be free of nitrogen limitation. Our
ensemble integrates nine crop models for wheat and maize (CARAIB,
EPIC-TAMU, JULES, GEPIC, LPJ-GUESS, LPJmL, pDSSAT, PEPIC,
PROMET) and eight for rice and soybean (CARAIB, EPIC-TAMU, JULES,
GEPIC, LPJmL, pDSSAT, PEPIC, PROMET). The crop models are driven
by outputs from 38 CMIP6 global climate models, spanning a wide range
of climate sensitivities and precipitation-temperature trajectories
(Meehl et al., 2020). Because the emulators are driven by relative
changes in GCM variables, no bias correction of the GCM fields is
required (Li et al., 2023a; Miiller et al., 2021). The drought impact
metric was estimated as the irrigated-rainfed yield difference (yield
gap), which was used in all subsequent sensitivity analyses. To better
reflect the spatial heterogeneity and temporal evolution of drought
impacts across grids with different baseline productivity, we
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additionally present a rainfed-normalized yield-gap index for mapping
and comparison:
Y;

irri, - Yr in
Ygap _ irrigated -ainfed % 100% (1)
Yrainfefl

Where Ygq, is the crop yield gaps, Yirigteq is the irrigated yield, and
Yrainea is the rainfed yield. We normalized the yield gaps by rainfed-
yield to facilitate spatial comparison across grids with different base-
line productivity and to retain an intuitive interpretation in which larger
values indicate stronger relative water limitation (i.e., larger propor-
tional irrigation benefits). In this study, we use the yield-gap/Yrainfed
(rather than yield-gap/ Yirigaed) because rainfed yield provides a locally
relevant water-limited baseline, making the ratio easier to interpret as
drought-related yield loss relative to local rainfed conditions. Note that
this normalized index is used to present the spatiotemporal patterns of
yield-gap evolution, whereas the attribution and sensitivity analyses are
based on the absolute yield difference. Moreover, in this framework, the
yield gap is interpreted as a biophysical indicator of water-limitation
alleviation under irrigation; socio-economic constraints on irrigation
capacity (e.g., irrigation policy or infrastructure limitations) are not
represented and may confound real-world reliance.

2.3. Statistical downscaling

Since the 38 GCMs have coarse resolution, we applied statistical
downscaling to better resolve relationships between the yield gap and
climatic drivers. Monthly GCM outputs were first bilinearly resampled
to a 5-arc-minute grid and then bias-corrected using the delta method.
We first bilinearly resampled each GCM field to 5-arc-minute. Bias
correction used the delta method relative to 1980-2010, treating vari-
ables additively within the growth season. For each variable X(tem-
perature or precipitation), the monthly bias was computed as

D=XgcmsXobs (2)
and the bias-corrected (downscaled) field was obtained as

XSD=XGCMs-D 3

Where Xgcum is the temperature or precipitation from the GCM out-
puts; Xops denotes temperature or precipitation from the observed
dataset (Peng et al., 2019); Xgp is the statistically downscaled data.

Because GGCM emulator baseline yields differ from observation-
based yields, we applied a yield bias correction to align absolute base-
line yield levels with observed data. Emulator outputs were first bili-
nearly resampled from 0.5°x 0.5° to a 5-arc-minute grid. For each crop
model, we then computed fractional yield changes between the baseline
(1982-2010) and each future period (2021-2099) and applied these
factors to the observational reference yields to generate bias-corrected
projections (Jagermeyr et al., 2021). Details of the observed yield
dataset are provided in Cao et al. (2025).

2.4. Statistical models

2.4.1. The random forest

We used a random forest (RF) model to identify the dominant drivers
of the yield gap, considering atmospheric CO», standardized precip-
itation-evapotranspiration index (SPEI), precipitation, and ET (calcu-
lated using the Thornthwaite 1948 method). RF can capture both linear
and nonlinear relationships between predictors and responses (Breiman,
2001; Feng et al., 2019). In this study, a random forest model was fitted
for each grid cell in R (version 4.1.1; R Core Team; R Foundation for
Statistical Computing, Vienna, Austria), and variable-importance values
were normalized to sum to 100 %. We assessed the dominant impact
factors for the baseline (1980-2010) and the future period (2069-2099)
across SSP126, SSP245, and SSP585. Random forest models were fitted
separately for each grid cell to quantify the relative importance of
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climatic drivers. Because hyperparameter tuning for each cell is
computationally infeasible at this scale, we adopted stable default set-
tings (Myy=3, Nyee=500), which are sufficient for robust importance
ranking in regression applications.

2.4.2. Dynamic linear model

The random forest model identifies the magnitude of each driver’s
contribution to the yield gap but does not provide the direction of effect
at each grid cell (positive versus negative). To quantify directional, time-
varying effects, we employ a dynamic linear model (DLM), which esti-
mates the sensitivity of crop yield gaps to individual climatic variables.
Compared with a standard multiple linear regression, the DLM accom-
modates time-varying coefficients and temporal dependence in the re-
siduals, making it well suited to time-series regression (Prado and West,
2010). This allows us to reveal trends in the sensitivity of irriga-
ted-rainfed yield gaps to precipitation, temperature, SPEI, and COy
under changing climate conditions. The DLM has been applied widely in
Earth system science, environmental change, and agriculture (Li et al.,
2023b; Liu et al., 2019; Zhang et al., 2022). We fit a separate DLM for
each grid cell for the baseline (1980-2010) and the future period
(2069-2099) across SSP126, SSP245, and SSP585, consistent with the
RF. To quantify long-term changes, we also test for linear trends in
sensitivities expressed per decade (10a) during 1980-2099 under
SSP126, SSP245, and SSP585. Since all climatic factors are included

Modelling Scenarios
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jointly in the DLM, the estimated sensitivities quantify conditional
marginal effects on the yield gap, rather than isolated single-factor re-
sponses. Consequently, co-variability among predictors may influence
individual coefficients through shared variance and should be consid-
ered when interpreting single-variable sensitivities. Although the RF
attribution and the DLM are well-suited for this study, dominant-driver
identification and sensitivity estimates may still involve methodological
uncertainty. An inter-method comparison and uncertainty analysis
across different statistical models (e.g., multiple linear regression and
other machine-learning approaches) is beyond the scope of this work but
represents valuable directions for future study.

Generally, using the methods described above, we quantified
changes in the yield gap under future scenarios and revealed trends in its
sensitivity to climatic drivers. This modeling and analytical framework
is transferable to other irrigated regions, provided that comparable
irrigated and rainfed yield estimates and climate-driver data are avail-
able. An overview of the analytical methodology is shown in Fig. 2.

3. Results
3.1. Projected crop yield change

We projected spatial patterns of crop yields for 2069-2099 relative to
the baseline (1980-2010) under SSP126, SSP245, and SSP585 in the
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YRB. Maize yield exhibits basin-wide declines under SSP245 and
SSP585, with reductions strengthening from SSP126 to SSP585 and from
northwest to southeast (Fig. 3a). For wheat, spring wheat generally
declines under climate change, especially in the northern YRB (e.g., the
Hetao Irrigation District), but winter wheat yield tends to increase under
climate change. The time series indicates that maize yield increases
slightly before 2040 s, then will declines reaching 0-15 % (SSP126),
1.0-22.6 % (SSP245), and 11.2-35.5 % (SSP585) compared with base-
line by 2099 (Fig. 3b). Wheat yield increases through mid-century, but
the rate slows after 2040 s, and under SSP585 yields begin to decline
after the 2070s. By 2099, wheat yield changes range around
—2.8-6.8% (SSP126), —6.5-9.6% (SSP245), and —15.0-4.8%
(SSP585) compared to 1980-2010. Spatiotemporal patterns for soybean
and rice are shown in Figure S1. Soybean yield generally increases in the
western and northeastern YRB but decreases in the middle and lower
reaches, with pronounced losses downstream under SSP585; rice oc-
cupies limited areas in the YRB but exhibits substantial declines under
climate change.

3.2. Projected crop yield gap change

Because total yield change under climate change integrates multiple
influences (precipitation, temperature, and CO5 effect), it is difficult to
isolate water limitation from yield changes alone. Therefore, we use the
irrigated-rainfed yield gap to quantify drought-induced yield losses
(Figures 4 and S2). The spatial patterns of yield-gap change differ from
those of total yield change. For all four crops, yield gaps generally
decrease from the upper to the lower reaches of the YRB, highlighting
upstream drought-limitation hotspots (Figures 4 and S2). Across
different scenarios, maize and soybean show the largest gaps under
SSP585, followed by SSP245 and SSP126 (Figure 4b and S2b). Wheat
exhibits a weaker or mixed scenario signal, whereas rice shows the
largest increases under SSP585, followed by SSP126 and SSP245. Time-
series results (1980-2099) indicate increasing yield gaps for maize and
soybean with rates ordered SSP585 > SSP245 > SSP126; wheat
decrease through mid-century and then increases after around
2040-2050.

Agricultural Water Management 324 (2026) 110137

3.3. Sensitivity analysis

3.3.1. Relative importance of different climate variables

To identify the dominant drivers of the yield gap under water limi-
tation, we quantified the contributions of precipitation, ET, SPEIL, and
CO-, to quantifying the contribution of each variable to yield gap. Pre-
cipitation represents water supply; ET serves as a proxy for atmospheric
water demand; SPEI integrates supply and demand to indicate drought
intensity; and CO, can modulate photosynthesis and water-use effi-
ciency (WUE), especially in C3 crops. For maize and soybean, SPEI is the
main factor (Figure 5 and S4), although its importance declines from
SSP126 to SSP585. Precipitation also exerts a strong influence, partic-
ularly under SSP126. The importance of CO: increases from SSP126 to
SSP585, consistent with a potential COs-driven increase in crop water-
use efficiency (WUE), with a larger increase for wheat and soybean
than for maize. For spring wheat, precipitation dominates the yield gap
and tends to strengthen in 2069-2099 under SSP126 and SSP245, but
weakens under SSP585. For winter wheat, SPEI dominates in the base-
line and declines in 2069-2099 under SSP126 and SSP245 (Figure S3).
Across different crops, ET shows relatively higher importance in the
baseline (1980-2010) and under SSP585 (2069-2099), but lower
importance under SSP126 and SSP245. Although rice occupies limited
areas in the YRB, its yield gap is mainly driven by precipitation and CO;
the relative importance of CO5 increases in the future, but the impor-
tance of precipitation declines, and ET increases the influence of the rice
yield gap (Figure S5).

3.3.2. Trends in climatic sensitivity of yield gaps

To assess how climate drives drought-related yield losses, we esti-
mated the climatic sensitivity of the yield gap with the DLM (Figure S6-
S9). Sensitivities are generally small in the historical period, consistent
with a milder climate state and variability that kept crops farther from
stress. In contrast, the rate and magnitude of climate change are ex-
pected to intensify over the coming decades, especially in 2069-2099,
leading to greater sensitivities (Li et al., 2019; Wang et al., 2022a; Yao
et al., 2020). In the future period, precipitation is mostly negative with
the yield gap (more rain with a smaller gap), and its magnitude tends to
weaken under SSP585, particularly in the upstream of the YRB. ET
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Fig. 3. Relative changes in crop yields from 1980 to 2099 in the Yellow River Basin under climate change. a, Spatial patterns of maize and wheat yield changes
during 2069-2099 compared with the baseline period (1980-2010) under SSP126, SSP245, and SSP585 scenarios. b, Time series of maize and wheat yield changes
from 1980 to 2099. Shaded areas represent the 20th-80th percentile range across 38 global climate models (GCMs) and nine crop models.
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shows a positive association with the yield gap (higher atmospheric
demand with larger gap), strongest under SSP245 and weaker under
SSP126 and SSP585. SPEI is generally negatively associated with the
yield gap, especially for maize, but it exhibits pronounced spatial het-
erogeneity across the basin (Figure S7). CO, sensitivities are also
negative, indicating that higher COy (via improved WUE) reduces the
yield gap. Notably, CO; sensitivity is strongest under SSP245 during
2069-2099 (Figure S6-S9), likely because CO; increases are modest
under SSP126, whereas under SSP585, CO, may exceed the range where
COy, fertilization continues to increase strongly.

We also evaluated trends in sensitivity over 1980-2099 across sce-
narios Fig. 6). The yield-gap sensitivity to precipitation increases over
most of the basin, with localized decreases mainly in the downstream
YRB. Note that because the precipitation-yield gap relationship is
negative, an increasing trend indicates a weakening in the absolute
magnitude of sensitivity (shifts toward zero). The area fractions showing
increasing trends are around 69.7 %, 66.7 %, and 77.8 % under SSP126,
SSP245, and SSP585, respectively (Fig. 6b). In contrast, ET shows
largely opposite patterns, with decreasing trends over approximately
65.8 %, 60.6 %, and 53.7 % of the YRB under SSP126, SSP245, and
SSP585, respectively. For example, in the downstream YRB, the pre-
cipitation sensitivity shows a slight decreasing trend, whereas ET shows
a pronounced increasing trend. The SPEI trend generally declines over
most regions-about 67.4 %, 61.7 %, and 64.7 % show decreasing trends
under SSP126, SSP245, and SSP585, with increases primarily concen-
trated in the western YRB. For CO, most areas display decreasing trends
(approximately 70.5 %, 84.3 %, and 92.8 % under SSP126, SSP245, and
SSP585), and the trend magnitude tends to increase from the western
toward the eastern YRB.

For the other crops (wheat, soybean, and rice), spatial-temporal
patterns similar to those of maize (Figs. S10-S12). For wheat, precipi-
tation sensitivity shows increasing trends over 61.9 %, 55.5 %, and
64.3 % of the YRB under SSP126, SSP245, and SSP585, respectively,
while ET sensitivity shows decreasing trends over 73.8 %, 69.9 %, and
66.6 %. SPEI sensitivity generally decreases across most regions
(77.8 %, 73.1 %, and 65.8 % with decreasing trends under SSP126,
SSP245, and SSP585), and CO, sensitivity also decreases in around
87-90 % of the basin across scenarios. A notable exception is soybean,
for which ET sensitivity increases across most regions.

3.4. Uncertainty of yield gap predictions

To summarize uncertainty across the ensemble, we use the coeffi-
cient of variation (CV) to characterize spread in the irrigated-rainfed
yield gap (Fig. 7). Spatially, maize shows higher CV in the southern
YRB, whereas wheat uncertainty is greater toward the western basin. For
time series, maize CV declines steadily from around 0.76-0.78 in the
historical period to around 0.65-0.75 by the late century among the
three scenarios. It is perhaps because, as systems become increasingly
water-limited, responses across models become more similar. In
contrast, wheat exhibits a U-shaped change into mid-century and then
rises after around 2060, with the largest late-century increase under
SSP585 (from around 0.52-0.54-0.56-0.66, among three scenarios). For
soybean and rice, CV also tends to decrease toward the end of the cen-
tury (Figure S13). Notably, CV provides an overall measure of ensemble
spread but does not separate the relative contributions of crop models,
climate models, or their interactions, and we did not apply uncertainty-
constraining approaches in this study.

4. Discussion
4.1. Climate change impact on food security
Our study projects high-resolution crop yield changes in the YRB and

finds substantial declines under climate change, especially under
SSP585. Since the recent climate trajectory most closely tracks SSP585
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(Schwalm et al., 2020), avoiding impacts will require aggressive adap-
tation to increase the resilience of the food system (Peng and Guan,
2021). For maize, soybean, and rice, the irrigated-rainfed yield gap in-
creases under different scenarios (Fig. 4 and Figure S2), indicating
heightened drought risk. In the future period, the drought and heat risks
substantially increased (Li et al., 2019; Xu et al., 2024), making irriga-
tion essential for food security and buffer effects by providing
on-demand water and mitigating dry-heat stress via sustained transpi-
ration and canopy cooling (Wang et al., 2021; Yao et al., 2025a). In
contrast, wheat shows a weaker and mixed scenario signal, likely
because winter and spring wheat grow in different seasons and therefore
experience different seasonal precipitation changes. Winter wheat
shows a slight reduction in the yield gap, likely because it grows during
the cool season when ET is lower and projected precipitation increases
can buffer water stress, even as mean temperature increases. Spring
wheat shows slightly increasing yield gaps because warming intensifies
hot, dry conditions in late spring and summer, increasing drought risk.
Such spatial patterns are generally consistent with previous crop-yield
projection studies (Hou et al., 2024; Wei et al., 2025), although the
magnitudes differ, likely due to differences in the crop and climate
models used.

4.2. Climatic sensitivity to yield gaps

We assessed the relative importance of climatic drivers and found
clear spatial heterogeneity: different regions are dominated by different
variables in explaining the irrigated-rainfed yield gap. In the upstream
of YRB (e.g., the Hetao Irrigation District), ET is the dominant factor. It is
perhaps because high Vapor Pressure Deficit (VPD) and relatively low
precipitation limit recharge of root-zone soil moisture from rainfall.
Moreover, widespread soil salinity further reduces plant-available
water, making production heavily dependent on irrigation (Sun et al.,
2016; Zhao et al., 2025). For different scenarios, ET is projected to in-
crease with warming, especially under SSP585 (Kim et al., 2021). Thus,
in irrigation-dependent areas, ET increases the dominance of the yield
gap (Fig. 5 and Figure S3-S5). Consequently, food production in these
regions will increasingly rely on irrigation. In the middle reaches of the
YRB, precipitation dominates the yield gap. It is because the summer
monsoon impacts the timing and amount of root-zone recharge, with
relatively low VPD (Liu et al., 2021), that rainfall anomalies have a more
effective impact on crop growth. In addition, the soil-hydrologic setting,
particularly in the eastern YRB, exhibits higher 6s (saturated water
content) and moderate Or (residual water), indicating a higher field
capacity and likely larger plant-available water than the salinized soil of
Hetao (Tong et al., 2024). Thus, precipitation is converted more effi-
ciently into root-zone recharge. Under the SSP126 and SSP245, pre-
cipitation remains the dominant control because the increase in
potential evaporative demand is modest, and ET does not become the
binding constraint (Collignan et al., 2023; Rouholahnejad Freund and
Kirchner, 2017). Consequently, changes in the aridity index (PET/P) are
small and largely precipitation-driven, and ET is not the binding
constraint in these scenarios. In the lower YRB, where rainfall is more
abundant and high infiltration (Li et al., 2020), and loam-silt-loam soils
provide substantial plant-available storage (Zhao et al., 2017). There-
fore, the irrigated-rainfed yield gaps are smaller than in other regions,
and the SPEI can better explain their variability than precipitation or ET
al.one. Because both water supply (e.g., precipitation) and atmospheric
demand (e.g., ET) are relatively high, precipitation or ET by themselves
cannot represent crop water status. Generally, identifying the dominant
factors by region can help better understand how drought risk affects
and more accurately interpret scenario-dependent impacts on yields.

The sensitivity of the irrigated-rainfed yield gap to climate drivers is
dynamic under climate change. For precipitation, the negative sensi-
tivity weakens (shifts toward zero) in much of the upper YRB, where the
yield gap is largest, indicating a weakened marginal influence of rainfall
on narrowing the gap. In the arid upstream, sodic (saline-sodic) soils
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Fig. 4. Irrigated-rainfed yield gap for maize and wheat in the Yellow River Basin under historical and future climate scenarios based on the multi-model ensemble. a,
Spatial patterns of yield gaps during the historical period (1980-2010) and future period (2069-2099) under SSP126, SSP245, and SSP585 scenarios. b, Density
distributions of yield gaps for maize and wheat under different climate scenarios. ¢, Time series of yield gap changes from 1980 to 2099 for maize and wheat.

have lower infiltration capacity and plant-available water, while rising
VPD accelerates post-rain soil-water drawdown, and such processes
make rainfall less effective at recharging the root zone (Shrivastava and
Kumar, 2015; Yuan et al., 2019). At the same time, higher atmospheric
demand drives more soil evaporation from rainfall at the expense of
root-zone recharge and transpiration, resulting in a concurrent decline
in the marginal influence of both precipitation and ET on the yield gaps
(Stoy et al., 2019; Zhang et al., 2017). Therefore, under these conditions,
SPEI can integrate supply and demand, which more effectively captures
the water conditions ((Fig. 6). By contrast, parts of the middle and lower
YRB show a decreasing trend in precipitation sensitivity (more nega-
tive), indicating stronger precipitation-yield coupling and greater po-
tential for rainfall to moderate the yield gap. In these regions, higher
soil-water storage and increasing precipitation more effectively trans-
late into root-zone moisture (Liu et al., 2024; Zhou et al., 2021). In
addition, the increasing CO, can enhance plant growth while partially
closing stomata, increasing water-use efficiency (WUE) that can improve
the productivity return per millimeter of rain, especially in Cs crops
(Adams et al., 2021; Haverd et al., 2020; Toreti et al., 2020). Notably,
the CO, fertilization signal is stronger in the arid upper basin (Fig. 6),
where growth is most water-limited. Under such conditions, higher CO,
raises WUE and allows each millimeter of rainfall to get a larger pro-
ductivity gain than in less water-limited regions (Donohue et al., 2013;
Zhang et al., 2022). However, our results indicate that the crop yield
benefits from increased WUE have likely been offset by the

intensification of drought in these regions. In addition, the benefit of
CO-induced water savings depends on concurrent changes in evapo-
transpiration (ET) and atmospheric demand, which reflect coupled
vegetation—climate interactions and are strongly regulated by multiple
climatic drivers (Nkiaka et al., 2024).

4.3. Potential implications for sustainable development

Although irrigation is essential for food security (Rosa et al., 2020), it
can increase greenhouse gas emissions directly from soils and indirectly
from energy use, which highlights the need for sustainable irrigation
(Yang et al., 2023). As climate change expands drought risk and reliance
on irrigation, net atmospheric water influx to land may decline and
potentially aggravate drought trends due to increased irrigation (Yao
etal., 2025b). Therefore, targeted strategies are needed to mitigate these
trade-offs. The spatial variability of ET under warming reflects shifts
between water-limited and energy-limited regimes: in arid,
water-limited regions, ET is constrained mainly by soil moisture and
water supply, whereas in more energy-limited regions it responds more
to available energy and moisture conditions (Nkiaka et al., 2024). Thus,
these contrasts highlight the need for region-specific adaptation strate-
gies. For example, in ET-dominated regions, shifting from continuous
flooding and high-loss systems to alternate wetting and drying or
mid-season drainage in rice, and from sprinkler to drip or
micro-irrigation in upland crops, can reduce emissions while
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maintaining yields (Kuang et al., 2021). In precipitation-dominated re- structure, and apply key-stage supplemental irrigation when precipita-
gions, invest in effective rainfall on-farm storage, in-field retention, soil tion sensitivity is strongest. In addition, crop switching guided by our
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dominance maps can raise production while advancing sustainability
co-benefits by reallocating planting toward climates where each crop's
water climate sensitivities are more favorable (Chakraborti et al., 2023;
Xie et al., 2023). Generally, by mapping where yield gaps expand and
where sensitivities and their trends are strongest, together with regional
dominance of key drivers, our results provide spatially explicit evidence
to prioritize where and when irrigation and water-saving interventions
are likely to be most effective, with potential co-benefits for reducing the
greenhouse-gas intensity of production.

4.4. Limitations and way forward

This study has several limitations. First, extreme events can strongly
affect yields, but we did not examine yield-gap sensitivity to specific
extremes such as waterlogging (Kim et al., 2024) or flash drought (Otkin
et al., 2018). Using growing-season means may mask short, high-impact
episodes that alter the relationship between climate variables and the
irrigated-rainfed gap. Second, crop yield projections still have large
uncertainty (Li et al., 2023a; Miiller et al., 2021) from climate models,
process-based crop models, and their interaction(Wang et al., 2024a),
which may affect the magnitude of projected yield-gap changes and
sensitivity trends. In addition, the emulator-based climate-response
functions are represented with saturating relationships, indicating the
potential diminishing marginal effects at high driver levels. Conse-
quently, under stronger forcing, further increases in climatic drivers
may yield smaller incremental changes in the yield gap, affecting the
magnitude of scenario-dependent sensitivities. Third, while sustainable
irrigation under climate change can advance the Sustainable Develop-
ment Goals (SDGs), we did not evaluate specific irrigation strategies or
their net greenhouse gas outcomes in this work. Our future study could
focus on co-design and test sustainable irrigation portfolios that main-
tain yields under climate change while reducing greenhouse gas emis-
sions, linking our sensitivity trend maps to actionable scheduling,
technology choices, and policy instruments (McDermid et al., 2023;
Yang et al., 2023; Zhang et al., 2021). Future work could also better
represent short-term extremes by integrating sub-seasonal modeling or
weather-generator outputs to simulate high-impact events (e.g., heat,
flash droughts, and waterlogging) within the growing season. In addi-
tion, since soil organic carbon can buffer yield losses under warming
(Feng et al., 2022; He et al., 2025), an important direction is to assess
whether soil profile properties and carbon management can further

mitigate drought risk under future climates.
5. Conclusion

This study uses the irrigated-rainfed yield gap to quantify drought
risk in the Yellow River Basin under climate change. We estimate yield-
gap sensitivities to key climatic drivers (precipitation, evapotranspira-
tion, SPEI, and COz) and show that these sensitivities shift over time
across SSP126, SSP245, and SSP585. Combined with projected crop
yield changes and evolving irrigated-rainfed yield gaps, our results
identify where drought-related yield losses are likely to intensify and
where climatic impacts on the yield gap are strengthening or weakening.
These spatial hotspots provide clear targets for locally adapted, scenario-
aware irrigation and water-management planning. Since drought risk is
increasing due to climate change, especially in the YRB, which depends
heavily on irrigation, decision-makers need strategies that both improve
resilience and support sustainable management. Our results provide
spatially explicit evidence to support the prioritization of adaptation
planning and to inform where and when irrigation is likely to deliver the
greatest benefit, rather than prescribing operational “rules” directly. In
particular, the sensitivity trend maps can help identify regions and pe-
riods in which supplemental water is most strongly associated with
narrowing yield gaps, providing a quantitative basis for scenario-aware
water management planning. These insights can potentially contribute
to increasing the efficiency of climate-smart practices that stabilize
production while advancing long-term sustainability goals.
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