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Abstract
The Loess Plateau in China is considered one of the most ecohydrologically sensitive regions globally, primarily due to 
its significant spatial and temporal variability in rainfall. Accurately obtaining the spatial distribution of precipitation is 
crucial for hydrological simulation, ecological restoration and disaster warning. Using the daily rainfall observation of 
384 meteorological stations and SRTM elevation data in the Loess Plateau from 1980 to 2020, we systematically evalu-
ated the performance of three typical interpolation techniques including Thin Plate Spline Interpolation (TPS), Inverse 
Distance Weighting (IDW), and Co-kriging (elevation as covariate) along with three machine learning methods includ-
ing Random Forest (RF), Support Vector Machine (SVM) and Gaussian Process Regression (GPR). The training set and 
the validation set were divided using stratified sampling. We assessed the accuracy of different methods in interannual 
variation, seasonality and ecological zoning scale. The results show that TPS (RMSE = 2.76 mm/d, R2 = 0.71) and IDW 
(RMSE = 2.75 mm/d, R2 = 0.71)have the best overall performance. The accuracy of the Co-kriging method (R2 = 0.52) is 
notably compromised in areas of significant elevation change. Conversely, the machine learning method (with R2 ranging 
from 0.61 to 0.67) demonstrates an advantage in capturing the influence of elevation but tends to underestimate extreme 
rainfall values. The interpolation uncertainty exhibits seasonal and zonal differences; the largest errors occur in summer 
(mean RMSE = 5.98 mm/d) and in the gully-dominated regions of the Loess Plateau (Zone A1), while the highest accuracy 
observed in the sandy and irrigated agricultural areas (Zone C).

Highlights
	● TPS and IDW provide the best overall rainfall interpolation accuracy across the Loess Plateau.
	● Machine learning methods better capture elevation effects but underestimate extreme rainfall.
	● Interpolation errors are highest during summer months in July–August.
	● Interpolation accuracy varies across eco-zones, lower in gully regions and higher in agricultural areas.
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1  Introduction

Rainfall is a fundamental driving factor in hydrological 
and soil erosion models, and its spatial distribution plays a 
crucial role in flood mitigation strategies, drought warning, 
ecological restoration and agricultural production (Lopes 
2013; Zhu et al. 2020; Eugenio et al. 2014). Accurately 
understanding and simulating the distribution of daily rain-
fall is also crucial for assessing hydrological extreme events 
in the context of global climate change (Feng et al. 2025). 
However, due to constraints imposed by topography, climate 
and uneven distribution of meteorological stations (Zhu et 
al. 2025), observed rainfall data often suffer from discon-
tinuities and insufficient local representativeness (Camera 
et al. 2014; Chen et al. 2025). To address these limitations, 
spatial interpolation methods are widely applied to derive 
high-resolution rainfall distribution patterns. For example, 
in eco-hydrologically sensitive regions that experience 
strong spatiotemporal variability in rainfall and severe soil 
erosion, accurate simulation of rainfall distribution is cru-
cial for advancing ecological restoration objectives and pro-
moting sustainable agricultural development strategies.

Rainfall spatial interpolation methods can be broadly 
classified into deterministic methods (e.g., Inverse Dis-
tance Weighting (IDW), Thin Plate Spline (TPS)) and geo-
statistical methods (e.g., Kriging and its variants). Among 
deterministic methods, the IDW technique is based on the 
Tobler’s 'first law of geography', where weights are assigned 
based on a power function. This method is most effective in 
regions with a uniform distribution of stations and strong 
spatial autocorrelation, and it is favoured due to its simplic-
ity and computational efficiency. Das et al. (2017) compared 
the rainfall interpolation effects of the Kriging method, IDW 
and spline method in West Bengal, India, and found that IDW 
performed best in weekly rainfall interpolation. Similarly 
İlker et al. (2019) demonstrated that the IDW method can 
provide reasonable results at most stations, especially in the 
Central China Sea while Fung et al. (2022) highlighted the 
advantages of IDW in short-time scale interpolation. Yang 
(2015) further confirmed that IDW performed well in high-
resolution (1–8 km) rainfall interpolation scenarios. The 
spline function method utilises the spatial variation trend 
through mathematical functions, and can generate a smooth 
rainfall distribution surface, which is suitable for large-scale 
spatial interpolation. Plouffe et al. (2015) evaluated IDW, 
TPS, ordinary Kriging (OK) and Bayesian Kriging (EBK) 
based on Sri Lanka's agricultural ecological monitoring 
data, and found that TPS had the highest accuracy in high 
rainfall areas, while EBK was better in low rainfall areas. 
The study of Stalenberg et al. (2018) in Madagascar fur-
ther verified that TPS can effectively improve the spatial 
consistency of climate data, especially in long-term climate 

trend analysis. Lyra et al. (2018) compared five interpola-
tion methods (IDW, NRN, TLI, NN, SPT) in Rio de Janeiro, 
Brazil, and found that the thin plate spline method (SPT) 
achieved the highest accuracy during transitional seasons 
(summer to early autumn), effectively representing rainfall 
heterogeneity under complex terrain.

Geostatistical methods such as Kriging and its variants 
quantify spatial correlation through semivariograms, which 
can effectively integrate covariate information and improve 
interpolation accuracy. Pellicone et al. (2018) and Liu et al. 
(2021) demonstrated that Kriging methods often outperform 
deterministic approaches in rainfall spatial interpolation. 
For example in the Iberian Peninsula, the long-term rain-
fall interpolation accuracy of the UK _ gauss method is the 
highest (Ruiz-Ortiz et al. 2024). Zhu and Jia (2004) showed 
that in the Chaobai River Basin, the uncertainty of Kriging 
decreased significantly as the number of stations increased. 
In Portugal’s Guadiana River Basin, Fagandini et al. (2024) 
found that OK outperformed the traditional FAO method for 
daily rainfall interpolation, while Guidoum (2025) showed 
that Regression Kriging (RK) provided the best performance 
for annual rainfall mapping in the Chott El Hodna Basin.

In recent years, machine learning techniques have dem-
onstrated significant advantages in meteorological data 
interpolation due to their strong nonlinear fitting ability and 
adaptive learning mechanism (Zagorecki et al. 2013; Chang 
and Guo 2020; Park et al. 2020; Hou et al. 2025). For exam-
ple, Pinthong et al. (2024) compared six machine learning 
algorithms and four traditional interpolation methods and 
found that machine learning approaches provided superior 
performance in estimating monthly rainfall. However, there 
are significant differences in the performance of various 
machine learning algorithms when addressing spatial pre-
diction problems (Hou et al. 2024). The RF OK method pro-
posed by Li et al. (2011) combined random forest with the 
Kriging method, leading to a substantial reduction in inter-
polation error. Moreover, Nobrega and Barroca Filho (2025) 
found that random forest (RF) had the highest interpolation 
accuracy for annual maximum daily rainfall (R2 = 0.707) in 
Brazil’s semi-arid region. Rodríguez-Carrillo et al. (2025) 
demonstrated that daily rainfall estimation in the semi-arid 
basin of Mexico, both random forest and artificial neural 
network models yielded the most accurate predictions, with 
data augmentation techniques further enhancing model 
performance. In the context of monthly rainfall prediction 
in the eastern Mediterranean region of Turkey, Sattari et 
al. (2020) found that Vector Regression (SVR) performed 
better than other methods. Similarly, Achite et al. (2024) 
analyzed the data of 150 stations in northern Algeria and 
found that random forest had the best training performance 
in annual rainfall prediction. Collectively, these studies con-
firm the effectiveness of machine learning approaches for 
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rainfall interpolation across various spatial and temporal 
scales and highlight their potential for simulating the spatial 
distribution of rainfall in environmentally complex regions.

As a typical eco-hydrological sensitive area in China, 
the Loess Plateau has large spatial and temporal variabil-
ity of precipitation and serious soil erosion. The accurate 
simulation of rainfall distribution is very important for 
ecological restoration and sustainable agricultural develop-
ment. Early research on rainfall interpolation in this area 
primarily relied on traditional deterministic methods such as 
spline, IDW, polynomial interpolation and radial basis func-
tion (RBF). However, Meng et al. (2006) found that these 
methods often failed to account for the spatial autocorrela-
tion of annual rainfall interpolation, resulting in relatively 
high interpolation errors. In contrast, the Kriging method 
which incorporates spatial structure through semivariogram 
modeling, significantly improved accuracy. This finding 
was further supported by Zhao and Yang (2012) demon-
strated that the ordinary Kriging method had the smallest 
error (RMS = 43.50 mm) when applied to data from 108 
meteorological stations. Yu et al. (2015) found that the OK 
method (RMSE = 43.79, MAE = 34.61) was superior to IDW 
and RBF in the annual rainfall interpolation of the Loess 
Plateau, with the circular semivariogram model yielding the 
best performance. More recent studies have incorporated 
topographic factors to further enhance interpolation accu-
racy. For instance, Han et al. (2023), proposed the ADAGW 
method, which integrates aspect and elevation gradient 
information. This approach showed strong performance 
across multiple temporal scales (daily, monthly, and annual 
R2 were 0.74, 0.92, and 0.87, respectively), and RMSE was 
10% −30% compared to traditional interpolation methods.

This study addresses two critical scientific gaps in the 
spatial interpolation of rainfall over the Loess Plateau: (1) 
the majority of existing research emphasizes annual-scale 
analyses, with limited systematic evaluation of interpola-
tion accuracy at the daily scale, particularly because of the 
high spatial variability, intermittency, and computational 
demands involved; and (2) the role of terrain variation 
across different ecological zones in influencing interpolation 
performance remains insufficiently explored. In response, 
the objectives of this study are threefold: 1) to compare six 
spatial interpolation methods for daily rainfall estimation on 
the Loess Plateau; 2) to assess their accuracy across seasons 
and ecological zones; 3) to identify optimal methods for 
improved rainfall mapping.This study provides distinct sci-
entific novelty through its focus on: 1) Daily-scale system-
atic comparison across ecological zones; 2) Error behavior 
under elevation gradients.

2  Study area and dataset

2.1  Study area

The Loess Plateau is located in north-central China spanning 
from 33°N to 41°N latitude and 100°E to 114°E longitude, 
covering an area of approximately 640,000 square kilome-
tres. The region exhibits a pronounced elevation gradient, 
ranging from 100 to 5,000 m, with a topography that gener-
ally slopes from the highlands in the northwest to the low-
lands in the southeast. The Loess Plateau is characterized 
by a typical temperate continental monsoon climate, with 
an average annual rainfall of 150–750 mm, the majority of 
which occurs between July and September. This results in a 
distinct seasonal pattern of wet summers and autumns, con-
trasted with dry winters and springs. Due to its unique geo-
graphic and climatic conditions, the Loess Plateau is both 
a critical zone for soil erosion research and a focal area for 
national ecological restoration initiatives.

To reduce the prediction error associated with the'edge 
effect' in spatial interpolation (Bajat et al. 2013), a buffer 
zone with a bandwidth of 50 km around the Loess Plateau 
was considered. Accordingly, rainfall data were collected 
from 299 meteorological stations within the Loess Plateau 
and an additional 85 stations located in the surrounding buf-
fer zone (Fig. 1). The spatial distribution of daily rainfall 
across the Loess Plateau from 1980 to 2020 was jointly 
interpolated (Table 1).

2.2  Dataset

This dataset was obtained from daily observation records 
from meteorological stations nationwide provided by the 
National Meteorological Science Data Center ​(​​​h​t​t​p​s​:​/​/​d​a​t​a​.​c​
m​a​.​c​n​/​​​​​)​. It covers the period from 1980 to 2020 and includes 
multiple meteorological variables, such as temperature, 
humidity, rainfall, wind speed, sunshine duration, and atmo-
spheric pressure.

In addition, the digital elevation model (DEM) data 
were obtained from the Shuttle Radar Topography Mis-
sion (SRTM) conducted by the U.S. Space Shuttle Endeav-
our, with a spatial resolution of 90 m. The SRTM data was 
acquired through the Resource and Environment Data Cen-
ter of the Chinese Academy of Sciences ​(​​​h​t​t​p​:​/​/​w​w​w​.​r​e​s​d​c​
.​c​n​/​​​​​)​.​​

The Loess Plateau ecological zoning data were obtained 
from the National Earth System Science Data Center, China 
(http://www.geodata.cn).

1 3

Page 3 of 20    130 

https://data.cma.cn/
https://data.cma.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.geodata.cn


L. Jiang et al.

2.3  Sampling strategy and data partitioning

A stratified sampling approach was applied to partition the 
data to ensure that both the training and validation sets were 
representative of the heterogeneous terrain and ecologi-
cal conditions of the study area. The ecological zoning map 
(Fig. 1) was used as the stratification criterion. This strategy 
guarantees that samples from each ecological unit are propor-
tionally represented in both sets, thereby preventing spatial 
bias and ensuring a robust evaluation of interpolation meth-
ods across all landscapes. For each ecological zone, 70% of 
the meteorological stations were randomly selected for model 
training, while the remaining 30% were held out for inde-
pendent validation. The distribution of training and testing 
samples across all ecological zones is detailed in Table 2.

Table 1  Data sources and characteristics for the loess plateau study
Data Years Spatial range Resolution/sites Source Uses
Meteorological observa-
tion data

1980–2020 Loess Plateau and buffer zone Daily,384sites(299 + 85) (https://data.cma.cn/) Rainfall 
interpolation

SRTM DEM data 2000 Loess Plateau and buffer zone 90m (http://www.resdc.cn/) Terrain factors 
(elevation, 
slope, aspect)

Table 2  Distribution of training and testing samples across ecological 
zones
Ecological zone Total stations Training stations 

(70%)
Testing 
stations 
(30%)

A1 51 36 15
A2 40 28 12
B1 21 15 6
B2 36 25 11
C 33 23 10
D 118 83 35
Total 299 210 89

Fig. 1  Research area of the loess plateau. (a) Distribution of training 
and testing samples, ecological zones, and elevation; (b) Provincial 
context of the study area; (c) Geographic location of the Loess Pla-
teau in China. Ecological zones: A: Loess Tableland and Gully Region, 
A1: Loess Tableland and Gully Region A1 Sub-region, A2: Loess 

Tableland and Gully Region A2 Sub-region, B: Loess Hill and Gully 
Region, B1: Loess Hill and Gully Region B1 Sub-region, B2: Loess 
Hill and Gully Region B2 Sub-region, C: Sandy and Agricultural Irri-
gation Area, D: Rocky Mountain and River Valley Plain Area
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Zi = f(xi) + bT yi + ei� (1)

MIN :
n∑

i=0

[
Zi − f (xi) − bT yi

Wi

]
+ ρJm (f)� (2)

where Zi is the point to be interpolated at space i; xi is 
the d-dimensional spline independent variable, which is 
the meteorological element value of the known control 
point around the position i; f  is an unknown smooth func-
tion about xi; yi is an independent covariate; b is the coef-
ficient of independent covariate; ei is random error. Jm (f) 
is the roughness measure function of function f , which is 
the m-order partial derivative of function f ; ρ is a positive 
smoothing parameter, which balances the accuracy of data 
and the smoothness of the surface.

3.3  Inverse distance weighting

Inverse Distance Weighting (IDW) is a deterministic inter-
polation method based on spatial distance weighting. In this 
study, the IDW method was used for spatial interpolation of 
rainfall. The underlying assumption of IDW is that the value 
of the unknown point has a spatial correlation with the value 
of its adjacent known points, and this correlation decreases 
with the increase in distance. The IDW is a weighted aver-
age of the distance, so it is especially suitable for areas with 
uniform site distribution and moderate density. This study 
determines through sensitivity analysis (Appendix Table 5) 
that the parameter combination of a distance attenuation 
coefficient (p) of 1 and a maximum number of neighboring 
stations (Nmax) of 5 optimally balances the capture of local 

3  Methodology

3.1  Research framework

The technical workflow of this study is illustrated in Fig. 2: 
Based on the meteorological stations and elevation data of 
the Loess Plateau and its surrounding areas, the training set 
and the validation set are divided by stratified sampling; six 
methods of TPS, IDW, Co-kriging, RF, SVM and GPR were 
used for spatial interpolation. Finally, the accuracy of each 
method was evaluated by MAE, RMSE and R2, and its spa-
tial and temporal distribution characteristics were analyzed.

3.2  Thin plate spline interpolation

Thin Plate Spline (TPS) is a spatial interpolation method 
based on the principle of minimum curvature. It constructs 
a smooth surface that passes through all observation points 
using radial basis functions (Hutchinson 1995) to simulate 
the spatial distribution of meteorological elements while 
minimizing the overall bending energy of the surface. In 
this study, the model is implemented using the fields pack-
age in R, with its core involving the optimization of the 
smooth function f  via penalized least squares. The smooth-
ing parameter ρ is automatically determined by the pack-
age's built-in generalized cross-validation (GCV) procedure 
to balance fitting accuracy and surface smoothness, thereby 
preventing overfitting (Hutchinson 1998; Liu et al. 2008, 
2012). The theoretical model formula of the thin plate 
smooth spline model can be expressed as:

Fig. 2  Flow chart of rainfall interpolation
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3.5  Random forest

The random forest spatial interpolation method is a non-
parametric spatial prediction technology based on ensemble 
learning (Breiman 2001). It captures spatial heterogeneity 
and nonlinear relationships by constructing multiple regres-
sion decision trees. The model is implemented using the 
ranger package in R, configured with 500 trees. The core 
principle involves using Bootstrap resampling to generate 
several training subsets. Each subset independently trains 
the decision tree and introduces random feature selection to 
reduce the model variance (Breiman 2001), and finally out-
puts the interpolation result through the predicted mean of 
the whole tree. This method does not need to preset data dis-
tribution assumptions and can adaptively process complex 
spatial structures. It can automatically identify key environ-
mental covariates (such as elevation, slope, etc.) through 
feature importance assessment, in which the built-in Out-of-
Bag error estimation provides model uncertainty quantifica-
tion. In mathematical expression, Cutler et al. (2012) defined 
n as a dimensional random vector X = (x1, ..., xn)T  repre-
senting the input variable, Y  as the output variable (rainfall), 
and its joint distribution is EX,Y = (X, Y ). The prediction 
function f (x) is constructed by minimizing the expected 
loss function L (Y, f (x)), which is represented by the fol-
lowing formula:

EX,Y (L (Y, f (X)))� (5)

In the random forest regression model, when the least 
squares method is used to minimize the prediction error, its 
mathematical expression can be expressed as a formula (6).

f (X) = E (Y | X = x)� (6)

This method constructs multiple base predictors ' base 
learners 'h1 (x) , ..., hN (x) and integrates their outputs 
into a ' joint predictor 'f (x). Finally, the average prediction 
value shown in formula (7) is used as the final result for the 
regression problem.

f (x) = 1
N

N∑
n=1

hn (x)� (7)

3.6  Support Vector machine

Support vector regression (SVR) is a non-parametric spa-
tial prediction method based on statistical learning theory 
(Drucker et al. 1996). Its core idea is to map low-dimensional 
space to high-dimensional feature space through kernel 
function, and construct the optimal regression hyperplane 

characteristics with the model's overall performance. The 
IDW algorithm is as follows, implemented using the gstat 
package in R:

Z =

∑n
i=1

1
d1

i
Z (xi)∑n

i=1
1

d1
i

� (3)

where Z is the grid value of the interpolation point 
to be simulated; Z (xi) is the measured value of the 
i (i = 1,2, 3, . . . , n) meteorological station; n is the number 
of sample points; di is the distance from the interpolation 
point to the i site.

3.4  Co-kriging

Co-kriging is a multivariate geostatistical estimation 
method developed on the basis of Kriging. It adds auxil-
iary information that is highly correlated with variables as 
covariates to the Kriging interpolation process. It not only 
considers the spatial autocorrelation of independent vari-
ables. but also considers the correlation between covariates 
and independent variables (Knotters et al. 1995). Conse-
quently, it requires the estimation of both the variograms of 
individual variables and the cross-variograms between the 
target and covariates, thereby improving prediction accu-
racy in cases where auxiliary information is available. The 
method is implemented using the automap and gstat pack-
ages in R, with elevation serving as the primary covariate. 
The semivariogram is automatically fitted using the autofit-
Variogram function, which evaluates multiple models base 
on their goodness-of-fit to the sample data (Pebesma 2004; 
Hiemstra et al. 2009). Co-kriging theoretical model formula 
(Deutsch and Journel 1997):

Ẑ (S0) =
N∑

i=0
aiZ (Si) +

M∑
j=0

bjY (Sj)� (4)

where i and j denote the indices of the independent variable 
and covariate, respectively. S0 represents the location of the 
point to be interpolated. Si and Sj  indicate the locations 
of the observation points for the independent variable and 
covariate around S0, respectively. Z (Si) and Z (Sj) are the 
measured values of the independent variable and covariate 
at points i and j, respectively. ai and bj  are the unknown 
weights of the independent variable and covariate at points i 
and j, respectively. Ẑ is the interpolation result at the point 
S0. N  and M  represent the number of measurement points 
for the independent variable and covariate S0, respectively.
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kernlab package in R, employing the Gaussian kernel with 
automatic parameter determination (Zhang and Liu 2025). 
Its core model can be expressed as:

Y = f (X) + ξ� (11)

where Y  is the observed value; f (X) is the underlying ran-
dom function; X  is the input vector; ξ is the Gaussian noise 
of variance σ2

n (here,σ2
n = 0.1),ξ N

(
0, σ2

n

)
. In Gaussian 

process regression, each input variable x has a random vari-
able f (x), that is, the value of the random function at the x 
position. The posterior distribution of the observed value Y  
and the joint prior distribution of the observed value Y  and 
the predicted value y are:

Y ∼ N
(
0, K (X, X) + σ2

nIn

)
� (12)

[
Y
y

]
∼ N

(
0,

[
K (X, X) + σ2

nIn K (X, x∗)
K (x, X) K (x∗, x∗)

])
= N

(
0,

[
K KT

∗
K∗ K∗∗

])
� (13)

where K (X, X) = (Kij) is a symmetric positive definite 
covariance matrix, and the matrix element (Kij) measures 
the correlation between Ki and Kj  through the kernel func-
tion.K (x∗, X) = K(X, x∗)T  is the covariance matrix of 
test set x and training set X . K (x∗, x∗) is the covariance 
of the test set x∗ itself. In is an n-dimensional unit matrix. 
Then the posterior distribution of the predicted value y can 
be obtained, y and i are the mean and variance of the pre-
dicted value y, respectively.

3.8  Validation strategy

To comprehensively evaluate the performance and spatial 
robustness of the interpolation methods, this study adopt a 
two-tier validation strategy. First, a standard random split-
ting procedure is employed, allocating 70% of the meteoro-
logical stations to the training set and the remaining 30% to 
the test set, ensuring a statistically representative data parti-
tion for assessing overall predictive accuracy. In order to 
further evaluate whether the performance of the model is 
affected by the spatial clustering of the data, this study uses 
the global Moran 's index to perform spatial autocorrelation 
analysis on the interpolation residuals to verify the spatial 
independence of the model errors (Asokan et al. 2025), thus 
providing a statistical basis for evaluating the effectiveness 
of the random segmentation verification scheme in this 
study.

3.9  Evaluation

Cross-validation was employed to evaluate the accuracy of 
the spatial interpolation. Specifically, 87 stations from the 
full dataset are randomly selected as test samples, and the 

in this space. This method is particularly suitable for pro-
cessing spatial data with complex nonlinear relationships 
and can still maintain good performance in the case of small 
samples (Salcedo-Sanz et al. 2016). In this study, SVR is 
used for spatial interpolation of rainfall, which is character-
ized by elevation, latitude and longitude, and rainfall is the 
target. By optimizing the regularization parameter C = 10, 
insensitive parameter ε = 0.1 and the kernel parameter γ 
for the radial basis function (RBF) is automatically and heu-
ristically determined by the built-in procedure of the e1071 
package (Zhang 2024). the optimal parameter combination 
is determined by cross validation to ensure the generaliza-
tion ability of the model. The mathematical model of SVR 
is achieved by minimizing the following objective function:

min
w

1
2

∥w∥2 + C
l∑

i=1
(ξi + ξ∗

i )� (8)

subject to




yi − wT xi − b ≤ ε + ξi

wT xi + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0

� (9)

where w is the weight vector, xi is the vector of the input 
value, b is the bias term, ε is the insensitive loss param-
eter, and yi is the actual output value. C is the regularization 
parameter, and ξi and ξ∗

i  are relaxation variables (Zhang and 
ODonnell 2020). SVR uses kernel trick to deal with non-
linear problems. The commonly used radial basis function 
(RBF) kernel is defined as:

K (x, x′) =

{
RFB

exp
(

−γ∥x − x′∥2
) � (10)

where γ represents the distance threshold from the hyper-
plane to the support vector, which is used to effectively 
distinguish different types of samples. ∥x − x′∥2 represents 
the Euclidean square distance from the sample point to the 
hyperplane (Raghavendra and Deka 2014).

3.7  Gaussian process regression

Gaussian process regression (GPR) is a nonparametric spa-
tial interpolation method based on Bayesian framework, 
which shows unique advantages in the field of meteorol-
ogy and hydrology (Chilès and Delfiner 2012). This method 
regards the rainfall field in the target area as the realiza-
tion of the Gaussian random process, and characterizes 
the spatial dependence by the covariance function, includ-
ing the square exponential function or the Matérn function 
(Keriven et al. 2018). The model is implemented using the 
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Table 6). The results indicate that using only longitude and 
latitude generally yields superior statistical metrics across 
all methods. Nonetheless, given the significant topographic 
relief of the Loess Plateau, elevation is a physically criti-
cal determinant of rainfall patterns. Therefore, to ensure 
physical rationality and to maintain a consistent basis for 
comparing the ability of different methods to incorporate 
topographic information, we adopt a unified set of covari-
ates (longitude, latitude, and elevation) for the Co-kriging, 
RF, SVM, and GPR methods. In contrast, the TPS and IDW 
methods maintain the traditional two-dimensional approach 
(longitude and latitude only). This variable selection strategy 
not only ensures the rationality and comparability between 
methods but also takes into account the actual needs of spa-
tial interpolation in complex terrain areas.

This study systematically evaluated the performance of 
six spatial interpolation methods in daily rainfall prediction. 
Based on observed and predicted values (Table 3), the actual 
range of rainfall predicted by each method is TPS: 0–197.97 
mm/d; IDW: 0–189.58 mm/d; Co-kriging: 0–391.19 mm/d; 
RF: 0–146.45 mm/d; SVM: 0–97.98 mm/d; GPR: 0–119.14 
mm/d. In terms of accuracy evaluation, both MAE and 
RMSE indicated that IDW performed best (0.68 mm/d and 
2.75 mm/d), followed by TPS (0.70 mm/d and 2.76 mm/d). 
Notably although the MAE of Co-kriging is at a medium 
level (0.80 mm/d), its RMSE is significantly higher (3.58 
mm/d), which may be due to the sensitivity of the method to 
extreme rainfall events. The correlation analysis indicated 
that the traditional methods showed stronger correlation 
while maintaining the prediction accuracy. The correlation 
coefficient of TPS and IDW was the highest (CC = 0.85). 
In machine learning methods, RF and GPR (CC = 0.82 and 
0.81) performed better than SVM (CC = 0.79). The results 
suggest that the traditional spatial interpolation methods 
(TPS and IDW) perform well in all indicators, especially in 
maintaining a high correlation coefficient while achieving 
a low prediction error. In contrast, although some machine 
learning methods (such as RF and GPR) have achieved 
acceptable results, their overall performance remained infe-
rior to that of the traditional interpolation technique.

remaining stations are used as training samples for spatial 
interpolation. The interpolation algorithms simulate the 
rainfall values at the test sites, assuming the true values are 
unknown and the performance is assessed by comparing 
these simulated values with the actual measurements. The 
evaluation metrics include Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), Coefficient of Determi-
nation (R2), and Pearson Correlation Coefficient (CC). The 
formulas are as follows:

MAE = 1
n

n∑
i=1

|Zai − Zλi|� (14)

RMSE =

√√√√ 1
n

n∑
i=1

(Zai − Zλi)2� (15)

R2 = 1 −
∑n

i=1 (Zai − Zλi)2

∑n
i=1

(
Zai − Za

)2 � (16)

CC =
∑n

i=1
(
Zai − Za

) (
Zλi − Zλ

)
√∑n

i=1
(
Zai − Za

)2
√∑n

i=1
(
Zλi − Zλ

)2 � (17)

where n is the number of sites in the test sample; Zai is the 
measured value of the—ith site; Zλi is the estimated value 
of the i—th site. Za is the average value of the measured 
values of all sites. Zλ is the average value of the interpo-
lated estimated values. n is the number of sites involved in 
verification.

4  Results

4.1  Comparison of interpolation accuracy of 
different methods

The variable selection strategy is determined through a pre-
liminary evaluation of covariate combinations (Appendix 

Table 3  Six spatial interpolation schemes for four statistical indicators (CC, R2, RMSE and MAE)
Models Variables CC MAE (mm/d) RMSE (mm/d) R2

Value 95% CI Value 95% CI Value 95% CI
TPS Lon, lat 0.845*** 0.698 [0.693, 0.703] 2.758 [2.754, 2.763] 0.713 [0.704, 0.722]
IDW Lon, lat 0.846*** 0.678 [0.673, 0.682] 2.751 [2.746, 2.755] 0.715 [0.706, 0.724]
Co-kriging Lon, lat, elevation 0.752*** 0.797 [0.791, 0.802] 3.584 [3.578, 3.590] 0.516 [0.495, 0.536]
RF Lon, lat, elevation 0.820*** 0.793 [0.788, 0.798] 2.974 [2.969, 2.979] 0.667 [0.657, 0.676]
SVM Lon, lat, elevation 0.785*** 0.774 [0.768, 0.779] 3.237 [3.231, 3.242] 0.605 [0.594, 0.617]
GPR Lon, lat, elevation 0.813*** 0.805 [0.799, 0.809] 2.998 [2.992, 3.002] 0.661 [0.652, 0.671]
The symbol *** indicates that the correlation between observations and predictions is statistically significant at the 0.1% significance level 
(p < 0.001). Bold indicates the lowest MAE and RMSE values for the best interpolation scheme (highest CC and R2). Lon, lat represent longi-
tude, latitude respectively.95% CI represents 95% confidence interval
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especially in terms of SDII (0.78) and Rx5day (0.73). RF 
performed best in PRCPTOT prediction (r = 0.88), and sup-
port vector machine (SVM) had a unique advantage in CWD 
prediction (r = 0.67). Notably, Co-kriging demonstrated the 
weakest overall performance, with an average correlation 
coefficient of 0.65.

Further analysis indicated that different interpolation 
methods exhibit distinct strengths depending on the type of 
extreme rainfall index. The predictions for CDD and R10 
were relatively insensitive to the choice of method, with 
correlation coefficients remaining stable across models, 
ranging from 0.77–0.79 and 0.80–0.81, respectively. Nota-
bly, for PRCPTOT prediction, machine learning methods 
generally outperformed traditional approaches, with RF 
achieving the highest correlation coefficient of 0.88.

4.2  Performance of interpolation methods on 
extreme rainfall indices

Based on the 11 extreme rainfall indices recommended by 
the World Meteorological Organization (WMO) (Wu et al. 
2016; Wang et al. 2017), the prediction performance of six 
spatial interpolation methods for extreme rainfall indices 
was systematically evaluated. According to the performance 
of each index (Fig. 3), the traditional method is better than 
the machine learning method, among which TPS and IDW 
are the most prominent, and the average correlation coef-
ficients (r) of the two are 0.79 and 0.78, respectively. These 
two traditional methods show stable high-performance in 
most extreme rainfall index predictions. Among the machine 
learning methods, GPR performed best (average r = 0.75), 

Fig. 3  The 11 extreme rainfall indices were continuous drought days 
CDD (d), continuous wet days CWD (d), rainfall intensity SDII 
(mm/d), single-day maximum rainfall Rx1day (mm), five-day maxi-
mum rainfall Rx5day (mm), strong rainfall R95P (mm), extreme rain-

fall R99P (mm), moderate rainfall days R10 (d), heavy rainfall days 
R20 (d), strong rainfall days R25 (d), and annual total rainfall PRCP-
TOT (mm), r is Correlation
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4.4  Seasonal variation of spatial interpolation 
accuracy of daily rainfall

The Fig. 5 shows that the error has seasonal characteristics. 
From the trend of MAE and RMSE, it can be seen that the 
average error (MAE = 2.25mm/d, 2.10mm/d) and root mean 
square error (RMSE = 6.12mm/d, 5.84mm/d) of each inter-
polation method in July and August are significantly larger 
than those in other months, showing a unimodal distribution. 
The error gradually increased from January to July, peaked 
in July, and decreased from August to December. The error 
in December was the smallest (MAE = 0.06 mm/d), which 
was consistent with the seasonal fluctuation of rainfall. This 
seasonal pattern is primarily driven by two factors: first, the 
summer monsoon season brings intense convective rainfall 
events that are highly localized and spatially heterogeneous, 
challenging the representativeness of station-based obser-
vations; second, these months experience the highest fre-
quency of extreme rainfall, which significantly increases 
error variance, as evidenced by the upper outliers in the 
July–August boxplots (July MAE maximum = 3.97 mm/d, 
August MAE maximum = 3.63 mm/d).

Comparison of the accuracy indicators of different meth-
ods, it can be found that there are differences in the per-
formance of different interpolation methods. The MAE and 
RMSE medians of TPS and IDW are the lowest throughout 
the year (such as TPS, IDW July MAE median = 2.11mm/d, 
2.02mm/d), and R2 is stable at a high level (TPS, IDW 
annual R2 median > 0.6). However, the RMSE median of 
Co-kriging was higher throughout the year, peaking in July 
(7.15 mm/d). The R2 median of all methods in July and 
August decreased by about 0.2 compared with the dry sea-
son (TPS decreased from 0.81 in April to 0.61 in July), but 
TPS and IDW still maintained the best fitting performance 
(R2 median 0.63 and 0.64 in August).

4.3  Comparison of verification results of rainfall in 
different ecological zones

The Fig. 4 shows that the interpolation accuracy of the C 
ecological area is the best, and the average values of MAE 
and RMSE are 0.49 ± 0.006 mm/d and 2.23 ± 0.006 mm/d, 
respectively, which are significantly lower than those of 
other ecological areas. The average MAE and RMSE were 
0.87 ± 0.007 mm/d and 3.25 ± 0.008 mm/d, respectively, and 
the average R2 was only 0.45 ± 0.03. The C ecological zone 
is located in the northwest of the Loess Plateau. The annual 
average rainfall is only 100–400 mm, and the spatial vari-
ability of rainfall events is small. Secondly, the high altitude 
but flat terrain characteristics of the area reduce the difficulty 
of spatial interpolation. In most ecoregions (A1, A2, B1, C, 
D), TPS and IDW performed best, MAE and RMSE in these 
ecoregions were 7% −50% lower than other methods, and R2 
increased by 0.07% −40%. TPS (MAE = 0.71 ± 0.007mm/d, 
RMSE = 2.94 ± 0.007mm/d, R2 = 0.73 ± 0.010) 
was better than IDW (MAE = 0.71 ± 0.008mm/d, 
RMSE = 3.05 ± 0.008mm/d, R2 = 0.70 ± 0.014) in B2 sub-
region of loess hilly-gully region. It can be seen from the 
figure that the Co-kriging method has regional limitations. 
In the D ecological area (earth-rock mountain area and val-
ley plain area), the Co-kriging method performs the poorest 
performance. MAE = 0.88 ± 0.006 mm/d (22% higher than 
TPS), RMSE = 4.19 ± 0.006 mm/d (50% higher than TPS), 
R2 = 0.45 ± 0.019 (40% lower than TPS). Based on the com-
prehensive analysis results, it is recommended to adopt dif-
ferentiated interpolation strategies in different ecological 
regions: TPS or IDW with higher computational efficiency 
can be used in (A1, A2, B1, C, D) ecological regions; tPS 
was preferred in B2 ecological area. For the Co-kriging 
method, it should be avoided in the D ecological region, 
but in the C ecological region, its interpolation accuracy is 
comparable to that of TPS and IDW.

Fig. 4  Comparison of verifica-
tion results of rainfall in different 
ecological areas, A: Loess Plateau 
gully area, A1: Loess Plateau 
gully area A1 sub-area, A2: Loess 
Plateau gully area A2 sub-area, B: 
Loess Hilly and gully area. B1: 
Loess Hilly and gully area B1 sub-
area, B2: Loess Hilly and gully 
area B2 sub-area, C: Sandy land 
and agricultural irrigation area, 
D: Earth-rocky mountain area and 
valley plain area
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accuracy of Co-kriging, particularly during heavy rainfall 
periods, may reflect its strong reliance on covariate data, 
which limits its robustness under conditions of high rainfall 
variability.

Collectively, these results indicate that TPS and IDW 
achieve stronger error control (lower MAE and RMSE) 
and greater model stability (higher R2), yielding more 
reliable interpolation outcomes. Conversely, the reduced 

Fig. 5  Seasonal variation of spatial interpolation accuracy of daily rainfall
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Co-kriging, RF, SVM, GPR) on long time scales were ana-
lyzed. Comparative results indicated that TPS and IDW per-
formed best in the spatial interpolation of daily rainfall, and 
their MAE decreased by 15.9% compared with other meth-
ods. The RMSE is reduced by 0.21 ~ 0.47 mm/d compared 
with other methods, 0.83 mm/d compared with Co-kriging, 

4.5  Interannual variation of spatial interpolation 
accuracy of daily rainfall

Based on the accuracy evaluation of daily rainfall spatial 
interpolation results from 1980 to 2020 (Fig. 6), the perfor-
mance differences of six interpolation methods (TPS, IDW, 

Fig. 6  Interannual variation of spatial interpolation accuracy of daily rainfall
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which may weaken the characteristics of local heavy rainfall 
due to its smoothing effect. However, its spatial distribu-
tion pattern is in good agreement with the measured rainfall 
field. Although the predicted range of IDW (0–111.9 mm) 
is completely consistent with the measured value, showing 
good adaptability to the spatial heterogeneity of rainfall, the 
interpolation results show a typical " bull 's eye pattern, " 
that is, a concentric circle of high/low value bands is formed 
around the site, reflecting the sensitivity of this method to 
the weight distribution of discrete points. The machine 
learning methods (RF, SVM, GPR) showed smooth spatial 
distribution characteristics, and the prediction ranges were 
0–70.57 mm, 0–55 mm, and 0–97.63 mm, respectively. 
Although there is no extreme value deviation, the prediction 
of heavy rainfall is still underestimated. Co-kriging showed 
a significant overestimation in the southeastern mountain-
ous areas (A2, B2, D ecological areas) (the black part is 
the predicted rainfall > 112 mm), and the predicted value 
in some areas exceeded the measured maximum value by 
416.99mm/d. Notably, these abnormally high value areas 
only account for less than 1% of the total area of the study 
area, and their spatial distribution is highly consistent with 
the terrain mutation area (elevation gradient > 176.5 m/km), 
suggesting that the synergistic effect of terrain factors and 
extreme rainfall may lead to model failure. It is speculated 
that the model fails under the combined action of elevation 
mutation and extreme rainfall.

and the performance is improved by 30.3% compared with 
Co-kriging. From 1980 to 2016, the R2 of TPS and IDW was 
basically stable at 0.71 mm/d, and TPS was slightly higher 
than IDW in a few years. The error indices of RF and GPR 
were in the middle, the multi-year average values of MAE 
were 0.79 mm/d and 0.80 mm/d, the multi-year average 
values of RMSE were 2.95 mm/d and 2.98 mm/d, and the 
multi-year average values of R2 were 0.67 and 0.66, respec-
tively. The RMSE of Co-kriging and SVM was high, espe-
cially in 1990 and 2014; the RMSE of Co-kriging showed 
obvious peaks, reaching 4.04 mm/d, 3.75 mm/d and 4.08 
mm/d, respectively. Correspondingly, R 2 decreased to 0.34, 
0.34 and 0.38, which was the lowest among all methods, 
indicating poor stability in these approaches.

4.6  Extreme rainfall events and spatial 
interpolation

In order to systematically evaluate the performance of dif-
ferent spatial interpolation methods during heavy rainfall 
events on the Loess Plateau, this study selected rainfall data 
on July 29, 2011 (daily rainfall measured range of 0–111.9 
mm), and simulated the regional rainfall distribution with a 
spatial resolution of 0.001°. The interpolation results of the 
six methods (Fig. 7) show significant differences. The pre-
diction range of TPS (0–75.53 mm) was lower than the mea-
sured range (ratio of predicted-to-observed maxima = 0.68), 

Fig. 7  Spatial distribution of rainfall on July 29, 2011 interpolated by different methods
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predicted value of Co-kriging was as high as 308.74 mm, 
and the relative error was 308.74 mm. On July 29, 2014, the 
measured value was 0.0 mm, and the predicted value was 
391.19 mm. The predicted values of the other four abnormal 
points were also between 250–400 mm/d, while the mea-
sured values did not exceed 64 mm/d. This serious over-
estimation phenomenon directly led to: the RMSE before 
and after 1990 and 2010 reached 4.08 mm/d, which was 
significantly higher than in other years; the coefficient of 
determination of the same period decreased to 0.34, forming 
a significant time series peak. The reason is that Huashan 
station is an elevation anomaly point in the study area, and 
its altitude (2064.9 m) is significantly higher than that of 
the surrounding stations (300–600 m), forming a significant 
topographic mutation.

This systematic overestimation is a manifestation of 
methodological limitation rather than an issue of input 
data quality. The pronounced elevation differences present 
a significant challenge for Co-kriging in modeling spatial 
correlation. Since Co-kriging method relies on elevation 
as a key covariate, and the elevation difference between 
Huashan and the surrounding stations exceeds 1000 m, it 
is difficult for the semivariogram to accurately describe this 
non-stationary spatial relationship. During heavy rainfall 

4.7  Spatial autocorrelation analysis of interpolation 
errors

The analysis demonstrates that all interpolation methods 
(TPS, IDW, Co-kriging, RF, SVM, and GPR) show non-
significant spatial autocorrelation in their errors (global 
Moran's I: 0.012–0.106, P > 0.25), indicating spatially ran-
dom error distributions and strong spatial robustness across 
all approaches. Among these, SVM exhibited relatively 
higher spatial dependency (global Moran's I: 0.106), yet 
still within the non-significant range, suggesting consistent 
spatial randomness in error patterns (Fig. 8).

The spatially random distribution of errors demonstrates 
that model performance is not artificially inflated by spatial 
clustering in the data, thereby supporting the validity of the 
conventional random split validation for this specific study.

5  Discussion

5.1  Uncertainty analysis and abnormal point 
recognition of Co-kriging

The comparative analysis of the six interpolation methods 
revealed that the Co-kriging approach exhibited notable 
deficiencies in the spatial interpolation of daily rainfall. This 
method not only produces a higher average error compared 
to traditional methods such as TPS and IDW, but also has the 
maximum root mean square error (RMSE = 3.58 mm/d) and 
the lowest coefficient of determination (R2 = 0.51) among 
the six evaluated methods. Further analysis found that the 
six abnormal points with predicted rainfall greater than 
250 mm/d were all from the prediction results of Huashan 
station (SiteID: 57046) (Table 4). Specifically, on July 26, 
1991, the measured rainfall was only 0.0 mm, while the 

Table 4  Co-kriging interpolation of predicted rainfall exceeding 
250 mm (Station: Huashan)
Date Observed 

rainfall 
(mm)

Predicted 
rainfall 
(mm)

Longi-
tude (°)

Lati-
tude 
(°)

Eleva-
tion 
(m)

1989/07/10 28.3 333.60 110.08 34.48 2064.9
1989/08/16 64.00 326.14 110.08 34.48 2064.9
1991/07/26 0.0 308.74 110.08 34.48 2064.9
2001/08/15 0.0 314.19 110.08 34.48 2064.9
2012/08/13 0.0 269.85 110.08 34.48 2064.9
2014/07/29 0.0 391.19 110.08 34.48 2064.9

Fig. 8  Spatial autocorrelation of 
interpolation errors measured by 
Moran's I
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semivariograms. However, this method exhibits a systematic 
underestimation issue in heavy rainfall events. The maxi-
mum rainfall measured on July 29, 2011 was 111.9 mm, and 
the predicted maximum values of RF, SVM and GPR were 
70.57 mm, 55 mm and 97.63 mm, respectively. The under-
estimation is 13% −51%. This is because machine learning 
smoothes the real value of the variable to find the minimum 
variance, thereby promoting a more uniform surface. The 
smoothing effect causes the small value to be overestimated 
and the large value to be underestimated (Yamamoto 2005; 
De Almeida et al. 2025). The systematic underestimation 
of extreme rainfall by machine learning models (RF, SVM, 
GPR) stems from inherent learning mechanisms operating 
under imbalanced data distributions. Daily rainfall data is 
dominated by zero or low-intensity values, with extreme 
events representing rare occurrences in the distribution 
tail. This skewed structure induces two mechanistic biases: 
First, models optimized to minimize global loss functions 
such as Mean Squared Error prioritize prediction accuracy 
for the majority of low-to-medium intensity rainfall, as the 
optimization process penalizes errors on frequent small 
values more severely than those on rare extremes, pulling 
predictions toward the conditional mean. Second, the inher-
ent smoothing effects of the algorithms themselves—such 
as prediction averaging in RF, smooth posterior means in 
GPR, and smooth outputs from SVM-RBF—act as implicit 
regularization that suppresses overfitting but also dampens 
responsiveness to true high-intensity signals (Yamamoto 
2005; De Almeida et al. 2025). Consequently, to maintain 
stability across the overall dataset, the models sacrifice 
accuracy in the distribution tails, leading to significant 
underestimation of extreme events.

5.3  Temporal resolution effects in rainfall 
interpolation

The spatial interpolation of daily rainfall provide essential 
high-precision data for applications such as hydrological 
simulation, ecological restoration and disaster warning. 
However, the results of this study show that the correlation 
coefficient of daily rainfall interpolation is generally low, 
which is mainly due to the combined effect of two factors. 
From the perspective of time scale, the spatial variability 
of daily rainfall is significantly stronger than that of the 
monthly scale and the annual scale. Liu et al. (2020) dem-
onstrated that the flow simulation is more sensitive to the 
rainfall spatial interpolation scheme on the short time scale, 
whereas differences in interpolation schemes at the monthly 
and annual scales have a relatively minor impact. This find-
ing aligns with the results of Liao and Li (2024) who applied 
radial basis function network and BP neural network. Both 
show that the simulation accuracy of daily rainfall data is 

events, the algorithm tends to overemphasize the correlation 
between elevation and rainfall, inappropriately extrapolate 
the high rainfall characteristics of Huashan to low altitude 
areas, resulting in a serious overestimation of the predicted 
values.

This phenomenon highlights the limitations of the Co-
kriging method in extreme terrain areas, that is, when there 
is significant heterogeneity in the elevation distribution of 
sample points, the interpolation method based on the sta-
tionary hypothesis may produce bias. In contrast, methods 
such as TPS and IDW demonstrate greater stability under 
these conditions, as they do not explicitly incorporate eleva-
tion as a covariate.

The results of this study show that the Co-kriging method 
performs worst among the six interpolation methods, and 
its accuracy is even lower than that of the ordinary Kriging 
(OK) method. This finding is consistent with the research 
conclusion of Liu et al. (2021), that is, when using the grid-
ded rainfall data set, the performance of the multivariate 
method CoK is not as good as the univariate method ordi-
nary Kriging. The core assumption of the CoK method is 
that there is a strong correlation between rainfall and alti-
tude although the study of Israelsson et al. (2020) shows that 
CoK can indeed improve the interpolation accuracy based 
on point data in dense rain gauge networks. However, the 
low correlation between rainfall and altitude is the key factor 
leading to the poor performance of CoK in this study. Many 
scholars (He et al. 2019; Herrera et al. 2019) have confirmed 
that when the correlation between rainfall and elevation is 
weak, the introduction of elevation covariates will reduce 
the interpolation accuracy. Especially in the Loess Plateau, 
complex topographic features may further weaken the spa-
tial correlation between rainfall and elevation.

5.2  Adaptability of machine learning methods

The overall performance of the machine learning meth-
ods RF, SVM and GPR falls between traditional methods 
and geostatistical techniques. Among these, RF exhibits 
the best performance, with the lowest RMSE and highest 
R2, followed by GPR, while SVM yielded the poorest per-
formance. These findings are consistent with the findings 
of Chutsagulprom et al. (2022). Moreover, the study also 
highlights that in comparison to traditional interpolation 
methods, machine learning approaches such as ANN dem-
onstrate relatively poor accuracy in rainfall estimation.

The advantage of machine learning methods lies in their 
ability to capture complex nonlinear relationships between 
rainfall and topographic variables. For instance, GPR 
can adaptively adjust the spatial correlation by automati-
cally learning the covariance function, thereby eliminat-
ing the dependence of traditional geostatistical methods on 
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application. When applied to different regions in the future, 
it should be validated and adjusted according to local topo-
graphic and climatic characteristics to ensure its scientific 
validity and reliability (Amini et al. 2019). Complex ter-
rain often leads to strong spatial heterogeneity in environ-
mental factors such as climate, soil, and hydrology, thereby 
imposing higher demands on spatial interpolation methods 
(e.g., Kriging, IDW, etc.). Compared to flat and homoge-
neous areas, complex terrain provides a more rigorous test-
ing ground for method comparison, better examining their 
robustness and applicability (Casellas et al. 2020; Lussana 
et al. 2018). Successful validation in such regions can offer 
more universal and valuable scientific references for other 
areas, including flat regions.

6  Conclusion

This study systematically evaluated the performance of six 
spatial interpolation methods for daily rainfall in the Loess 
Plateau. The results indicate that TPS and IDW exhibit the 
highest overall accuracy and stability. While TPS achieves 
the best interpolation effect, IDW produces comparable 
accuracy but introduces a pronounced “bull’s eye” pattern. 
The Co-kriging method performs adequately in flat areas but 
shows significant overestimation in regions with abrupt ele-
vation changes. Overall, machine learning methods under-
perform relative to traditional approaches, with even the 
better-performing algorithms, RF and GPR, as well as TPS, 
systematically underestimating extreme rainfall events.

Interpolation accuracy exhibits pronounced spatial and 
temporal heterogeneity. Temporally, errors peak during the 
summer months (July–August), yet traditional methods 
maintain good stability during the rainy season. Spatially, 
the highest accuracy is observed in sandy land and agri-
cultural irrigation areas (C area), whereas the loess plateau 
gully region (A1 area) demonstrates the lowest accuracy. 
TPS and IDW consistently provide superior performance 
across most ecological zones (A1, A2, B1, C, D), with TPS 
being particularly suitable for the B2 sub-area of the loess 
hilly and gully region. In contrast, Co-kriging is limited in 
applicability in rocky mountain and valley plain regions (D 
area) due to overestimation in areas with strong elevation 
gradients.

These findings provide a robust basis for selecting appro-
priate rainfall spatial interpolation methods under the unique 
complex terrain conditions of the Loess Plateau, contribut-
ing to improved hydrological simulations and informed eco-
logical management.

significantly lower than that of monthly average data. From 
a regional perspective, the rainfall in the Loess Plateau 
shows an obvious decreasing trend from southeast to north-
west. The spatial distribution of daily rainfall is strongly 
influenced by both topographic uplift and patterns of water 
vapour transport, resulting in pronounced regional hetero-
geneity (Zhao et al. 2018). This complex spatial heterogene-
ity makes the adaptability of different interpolation methods 
in local areas significantly different, thus further amplifying 
the overall error. Although in theory, daily rainfall interpo-
lation offers higher temporal resolution and the potential 
for more accurate data, its practical application remains 
challenging due to the combined constraints of time-scale 
effects and pronounced regional variability. Thus, it is nec-
essary to develop a new interpolation method that is more 
suitable for the spatial variability of daily rainfall patterns.

5.4  Implications of interpolation uncertainty for 
hydrological and erosion modeling

The error characteristics exhibited by different interpolation 
methods significantly impact hydrological and erosion mod-
eling on the Loess Plateau. In terms of capturing extreme 
rainfall, systematic underestimation directly leads hydro-
logical models to underestimate peak flow and total runoff 
volume. For the erosion-sensitive Loess Plateau, this sub-
sequently causes soil erosion models to significantly under-
estimate erosion amounts from individual rainfall events, 
ultimately affecting the design standards and effectiveness 
evaluation of soil and water conservation measures (Yang 
et al. 2020). Conversely, the systematic overestimation by 
Co-kriging in steep terrain creates the opposite problem 
(Jin et al. 2016), potentially leading to overestimated run-
off generation and erosion risk in mountainous watersheds, 
resulting in misallocation of disaster prevention resources. 
Spatial distribution errors—the "bull's eye" effect of IDW 
and the spatial autocorrelation of SVM errors—distort the 
true spatial pattern of rainfall input (Righi and Basso 2016). 
In distributed hydrological models, this disrupts the accu-
racy of runoff concentration path simulations and leads to 
misidentification of erosion hotspot areas.

Therefore, selecting interpolation methods that achieve 
a better balance between extreme value capture and spatial 
distribution fidelity is crucial for enhancing the reliability of 
hydrological and erosion modeling. The evaluation frame-
work established in this study provides scientific basis for 
such selection.

Although this study takes the Loess Plateau as a case 
study, the methodology holds potential for cross-regional 
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