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Abstract

The Loess Plateau in China is considered one of the most ecohydrologically sensitive regions globally, primarily due to
its significant spatial and temporal variability in rainfall. Accurately obtaining the spatial distribution of precipitation is
crucial for hydrological simulation, ecological restoration and disaster warning. Using the daily rainfall observation of
384 meteorological stations and SRTM elevation data in the Loess Plateau from 1980 to 2020, we systematically evalu-
ated the performance of three typical interpolation techniques including Thin Plate Spline Interpolation (TPS), Inverse
Distance Weighting (IDW), and Co-kriging (elevation as covariate) along with three machine learning methods includ-
ing Random Forest (RF), Support Vector Machine (SVM) and Gaussian Process Regression (GPR). The training set and
the validation set were divided using stratified sampling. We assessed the accuracy of different methods in interannual
variation, seasonality and ecological zoning scale. The results show that TPS (RMSE=2.76 mm/d, R2=0.71) and IDW
(RMSE=2.75 mm/d, R2=0.71)have the best overall performance. The accuracy of the Co-kriging method (R2=0.52) is
notably compromised in areas of significant elevation change. Conversely, the machine learning method (with R2 ranging
from 0.61 to 0.67) demonstrates an advantage in capturing the influence of elevation but tends to underestimate extreme
rainfall values. The interpolation uncertainty exhibits seasonal and zonal differences; the largest errors occur in summer
(mean RMSE=5.98 mm/d) and in the gully-dominated regions of the Loess Plateau (Zone A1), while the highest accuracy
observed in the sandy and irrigated agricultural areas (Zone C).

Highlights

e TPS and IDW provide the best overall rainfall interpolation accuracy across the Loess Plateau.

e Machine learning methods better capture elevation effects but underestimate extreme rainfall.

e Interpolation errors are highest during summer months in July—August.

e Interpolation accuracy varies across eco-zones, lower in gully regions and higher in agricultural areas.
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1 Introduction

Rainfall is a fundamental driving factor in hydrological
and soil erosion models, and its spatial distribution plays a
crucial role in flood mitigation strategies, drought warning,
ecological restoration and agricultural production (Lopes
2013; Zhu et al. 2020; Eugenio et al. 2014). Accurately
understanding and simulating the distribution of daily rain-
fall is also crucial for assessing hydrological extreme events
in the context of global climate change (Feng et al. 2025).
However, due to constraints imposed by topography, climate
and uneven distribution of meteorological stations (Zhu et
al. 2025), observed rainfall data often suffer from discon-
tinuities and insufficient local representativeness (Camera
et al. 2014; Chen et al. 2025). To address these limitations,
spatial interpolation methods are widely applied to derive
high-resolution rainfall distribution patterns. For example,
in eco-hydrologically sensitive regions that experience
strong spatiotemporal variability in rainfall and severe soil
erosion, accurate simulation of rainfall distribution is cru-
cial for advancing ecological restoration objectives and pro-
moting sustainable agricultural development strategies.
Rainfall spatial interpolation methods can be broadly
classified into deterministic methods (e.g., Inverse Dis-
tance Weighting (IDW), Thin Plate Spline (TPS)) and geo-
statistical methods (e.g., Kriging and its variants). Among
deterministic methods, the IDW technique is based on the
Tobler’s 'first law of geography', where weights are assigned
based on a power function. This method is most effective in
regions with a uniform distribution of stations and strong
spatial autocorrelation, and it is favoured due to its simplic-
ity and computational efficiency. Das et al. (2017) compared
the rainfall interpolation effects of the Kriging method, IDW
and spline method in West Bengal, India, and found that IDW
performed best in weekly rainfall interpolation. Similarly
Ilker et al. (2019) demonstrated that the IDW method can
provide reasonable results at most stations, especially in the
Central China Sea while Fung et al. (2022) highlighted the
advantages of IDW in short-time scale interpolation. Yang
(2015) further confirmed that IDW performed well in high-
resolution (1-8 km) rainfall interpolation scenarios. The
spline function method utilises the spatial variation trend
through mathematical functions, and can generate a smooth
rainfall distribution surface, which is suitable for large-scale
spatial interpolation. Plouffe et al. (2015) evaluated IDW,
TPS, ordinary Kriging (OK) and Bayesian Kriging (EBK)
based on Sri Lanka's agricultural ecological monitoring
data, and found that TPS had the highest accuracy in high
rainfall areas, while EBK was better in low rainfall areas.
The study of Stalenberg et al. (2018) in Madagascar fur-
ther verified that TPS can effectively improve the spatial
consistency of climate data, especially in long-term climate
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trend analysis. Lyra et al. (2018) compared five interpola-
tion methods (IDW, NRN, TLI, NN, SPT) in Rio de Janeiro,
Brazil, and found that the thin plate spline method (SPT)
achieved the highest accuracy during transitional seasons
(summer to early autumn), effectively representing rainfall
heterogeneity under complex terrain.

Geostatistical methods such as Kriging and its variants
quantify spatial correlation through semivariograms, which
can effectively integrate covariate information and improve
interpolation accuracy. Pellicone et al. (2018) and Liu et al.
(2021) demonstrated that Kriging methods often outperform
deterministic approaches in rainfall spatial interpolation.
For example in the Iberian Peninsula, the long-term rain-
fall interpolation accuracy of the UK  gauss method is the
highest (Ruiz-Ortiz et al. 2024). Zhu and Jia (2004) showed
that in the Chaobai River Basin, the uncertainty of Kriging
decreased significantly as the number of stations increased.
In Portugal’s Guadiana River Basin, Fagandini et al. (2024)
found that OK outperformed the traditional FAO method for
daily rainfall interpolation, while Guidoum (2025) showed
that Regression Kriging (RK) provided the best performance
for annual rainfall mapping in the Chott El Hodna Basin.

In recent years, machine learning techniques have dem-
onstrated significant advantages in meteorological data
interpolation due to their strong nonlinear fitting ability and
adaptive learning mechanism (Zagorecki et al. 2013; Chang
and Guo 2020; Park et al. 2020; Hou et al. 2025). For exam-
ple, Pinthong et al. (2024) compared six machine learning
algorithms and four traditional interpolation methods and
found that machine learning approaches provided superior
performance in estimating monthly rainfall. However, there
are significant differences in the performance of various
machine learning algorithms when addressing spatial pre-
diction problems (Hou et al. 2024). The RF OK method pro-
posed by Li et al. (2011) combined random forest with the
Kriging method, leading to a substantial reduction in inter-
polation error. Moreover, Nobrega and Barroca Filho (2025)
found that random forest (RF) had the highest interpolation
accuracy for annual maximum daily rainfall (R*=0.707) in
Brazil’s semi-arid region. Rodriguez-Carrillo et al. (2025)
demonstrated that daily rainfall estimation in the semi-arid
basin of Mexico, both random forest and artificial neural
network models yielded the most accurate predictions, with
data augmentation techniques further enhancing model
performance. In the context of monthly rainfall prediction
in the eastern Mediterranean region of Turkey, Sattari et
al. (2020) found that Vector Regression (SVR) performed
better than other methods. Similarly, Achite et al. (2024)
analyzed the data of 150 stations in northern Algeria and
found that random forest had the best training performance
in annual rainfall prediction. Collectively, these studies con-
firm the effectiveness of machine learning approaches for
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rainfall interpolation across various spatial and temporal
scales and highlight their potential for simulating the spatial
distribution of rainfall in environmentally complex regions.

As a typical eco-hydrological sensitive area in China,
the Loess Plateau has large spatial and temporal variabil-
ity of precipitation and serious soil erosion. The accurate
simulation of rainfall distribution is very important for
ecological restoration and sustainable agricultural develop-
ment. Early research on rainfall interpolation in this area
primarily relied on traditional deterministic methods such as
spline, IDW, polynomial interpolation and radial basis func-
tion (RBF). However, Meng et al. (2006) found that these
methods often failed to account for the spatial autocorrela-
tion of annual rainfall interpolation, resulting in relatively
high interpolation errors. In contrast, the Kriging method
which incorporates spatial structure through semivariogram
modeling, significantly improved accuracy. This finding
was further supported by Zhao and Yang (2012) demon-
strated that the ordinary Kriging method had the smallest
error (RMS=43.50 mm) when applied to data from 108
meteorological stations. Yu et al. (2015) found that the OK
method (RMSE=43.79, MAE=34.61) was superior to IDW
and RBF in the annual rainfall interpolation of the Loess
Plateau, with the circular semivariogram model yielding the
best performance. More recent studies have incorporated
topographic factors to further enhance interpolation accu-
racy. For instance, Han et al. (2023), proposed the ADAGW
method, which integrates aspect and elevation gradient
information. This approach showed strong performance
across multiple temporal scales (daily, monthly, and annual
R? were 0.74, 0.92, and 0.87, respectively), and RMSE was
10% —30% compared to traditional interpolation methods.

This study addresses two critical scientific gaps in the
spatial interpolation of rainfall over the Loess Plateau: (1)
the majority of existing research emphasizes annual-scale
analyses, with limited systematic evaluation of interpola-
tion accuracy at the daily scale, particularly because of the
high spatial variability, intermittency, and computational
demands involved; and (2) the role of terrain variation
across different ecological zones in influencing interpolation
performance remains insufficiently explored. In response,
the objectives of this study are threefold: 1) to compare six
spatial interpolation methods for daily rainfall estimation on
the Loess Plateau; 2) to assess their accuracy across seasons
and ecological zones; 3) to identify optimal methods for
improved rainfall mapping.This study provides distinct sci-
entific novelty through its focus on: 1) Daily-scale system-
atic comparison across ecological zones; 2) Error behavior
under elevation gradients.

2 Study area and dataset
2.1 Study area

The Loess Plateau is located in north-central China spanning
from 33°N to 41°N latitude and 100°E to 114°E longitude,
covering an area of approximately 640,000 square kilome-
tres. The region exhibits a pronounced elevation gradient,
ranging from 100 to 5,000 m, with a topography that gener-
ally slopes from the highlands in the northwest to the low-
lands in the southeast. The Loess Plateau is characterized
by a typical temperate continental monsoon climate, with
an average annual rainfall of 150750 mm, the majority of
which occurs between July and September. This results in a
distinct seasonal pattern of wet summers and autumns, con-
trasted with dry winters and springs. Due to its unique geo-
graphic and climatic conditions, the Loess Plateau is both
a critical zone for soil erosion research and a focal area for
national ecological restoration initiatives.

To reduce the prediction error associated with the'edge
effect' in spatial interpolation (Bajat et al. 2013), a buffer
zone with a bandwidth of 50 km around the Loess Plateau
was considered. Accordingly, rainfall data were collected
from 299 meteorological stations within the Loess Plateau
and an additional 85 stations located in the surrounding buf-
fer zone (Fig. 1). The spatial distribution of daily rainfall
across the Loess Plateau from 1980 to 2020 was jointly
interpolated (Table 1).

2.2 Dataset

This dataset was obtained from daily observation records
from meteorological stations nationwide provided by the
National Meteorological Science Data Center (https://data.c
ma.cn/). It covers the period from 1980 to 2020 and includes
multiple meteorological variables, such as temperature,
humidity, rainfall, wind speed, sunshine duration, and atmo-
spheric pressure.

In addition, the digital elevation model (DEM) data
were obtained from the Shuttle Radar Topography Mis-
sion (SRTM) conducted by the U.S. Space Shuttle Endeav-
our, with a spatial resolution of 90 m. The SRTM data was
acquired through the Resource and Environment Data Cen-
ter of the Chinese Academy of Sciences (http://www.resdc
.cn/).

The Loess Plateau ecological zoning data were obtained
from the National Earth System Science Data Center, China
(http://www.geodata.cn).

@ Springer


https://data.cma.cn/
https://data.cma.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.geodata.cn

130 Page 4 of 20

L. Jiang et al.

101°E 104°E 107°E 110°E 113°E 102"]3 10§°E IO$°E 11!°E 114}°E
N i P LE
z|® . . ANl (b) PYL
& . o s>
q [ ] Training Samples . L °* ., . 7 Inner Mongolia _, / 4 .
° Testing Samples 4 I a
L "'y o N‘( i / Z
5 Ecological Zones R O 1 e
g |:I Qinghai._ - =
7 Gansu ",
L+ 1200km S -
[ d il 5
% a
[} P
Z L] 3 -
?w .
on -
(c) TN E
o [ &
g $e g
Z
~ 3N
on
g1 .o
& | Elevation (m) o, °
[ I T T Z
1000 2000 3000 4000 5000 The loess plateau 6 f s
101°E 104°E 107°E 110°E 113°E 75°F 90°F 105°E 105°E  120°F

Fig. 1 Research area of the loess plateau. (a) Distribution of training
and testing samples, ecological zones, and elevation; (b) Provincial
context of the study area; (¢) Geographic location of the Loess Pla-
teau in China. Ecological zones: A: Loess Tableland and Gully Region,
Al: Loess Tableland and Gully Region Al Sub-region, A2: Loess

Table 1 Data sources and characteristics for the loess plateau study

Tableland and Gully Region A2 Sub-region, B: Loess Hill and Gully
Region, B1: Loess Hill and Gully Region B1 Sub-region, B2: Loess
Hill and Gully Region B2 Sub-region, C: Sandy and Agricultural Irri-
gation Area, D: Rocky Mountain and River Valley Plain Area

Data Years Spatial range Resolution/sites Source Uses

Meteorological observa- 19802020 Loess Plateau and buffer zone Daily,384sites(299+85)  (https://data.cma.cn/)  Rainfall

tion data interpolation

SRTM DEM data 2000 Loess Plateau and buffer zone 90m (http://www.resdc.cn/)  Terrain factors
(elevation,

slope, aspect)

2.3 Sampling strategy and data partitioning

A stratified sampling approach was applied to partition the
data to ensure that both the training and validation sets were
representative of the heterogeneous terrain and ecologi-
cal conditions of the study area. The ecological zoning map
(Fig. 1) was used as the stratification criterion. This strategy
guarantees that samples from each ecological unit are propor-
tionally represented in both sets, thereby preventing spatial
bias and ensuring a robust evaluation of interpolation meth-
ods across all landscapes. For each ecological zone, 70% of
the meteorological stations were randomly selected for model
training, while the remaining 30% were held out for inde-
pendent validation. The distribution of training and testing
samples across all ecological zones is detailed in Table 2.

@ Springer

Table 2 Distribution of training and testing samples across ecological
zones

Ecological zone  Total stations  Training stations Testing

(70%) stations
(30%)

Al 51 36 15

A2 40 28 12

Bl 21 15 6

B2 36 25 11

C 33 23 10

D 118 83 35

Total 299 210 89
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3 Methodology
3.1 Research framework

The technical workflow of this study is illustrated in Fig. 2:
Based on the meteorological stations and elevation data of
the Loess Plateau and its surrounding areas, the training set
and the validation set are divided by stratified sampling; six
methods of TPS, IDW, Co-kriging, RF, SVM and GPR were
used for spatial interpolation. Finally, the accuracy of each
method was evaluated by MAE, RMSE and R?, and its spa-
tial and temporal distribution characteristics were analyzed.

3.2 Thin plate spline interpolation

Thin Plate Spline (TPS) is a spatial interpolation method
based on the principle of minimum curvature. It constructs
a smooth surface that passes through all observation points
using radial basis functions (Hutchinson 1995) to simulate
the spatial distribution of meteorological elements while
minimizing the overall bending energy of the surface. In
this study, the model is implemented using the fields pack-
age in R, with its core involving the optimization of the
smooth function f via penalized least squares. The smooth-
ing parameter p is automatically determined by the pack-
age's built-in generalized cross-validation (GCV) procedure
to balance fitting accuracy and surface smoothness, thereby
preventing overfitting (Hutchinson 1998; Liu et al. 2008,
2012). The theoretical model formula of the thin plate
smooth spline model can be expressed as:

Zi = f(z:) + 0"y + e 6]
—~[Zi — f (1) = 0"y

MIN: 3 { F@) =Vl 4 o () ®)
i=0 v

where Z; is the point to be interpolated at space i; x; is
the d-dimensional spline independent variable, which is
the meteorological element value of the known control
point around the position ¢; f is an unknown smooth func-
tion about x;; y; is an independent covariate; b is the coef-
ficient of independent covariate; e; is random error. .J,,, (f)
is the roughness measure function of function f, which is
the m-order partial derivative of function f; p is a positive
smoothing parameter, which balances the accuracy of data
and the smoothness of the surface.

3.3 Inverse distance weighting

Inverse Distance Weighting (IDW) is a deterministic inter-
polation method based on spatial distance weighting. In this
study, the IDW method was used for spatial interpolation of
rainfall. The underlying assumption of IDW is that the value
of the unknown point has a spatial correlation with the value
of its adjacent known points, and this correlation decreases
with the increase in distance. The IDW is a weighted aver-
age of the distance, so it is especially suitable for areas with
uniform site distribution and moderate density. This study
determines through sensitivity analysis (Appendix Table 5)
that the parameter combination of a distance attenuation
coefficient (p) of 1 and a maximum number of neighboring
stations (Nmax) of 5 optimally balances the capture of local

Precipitation interpolation

Accuracy comparison

D tial int lati th : :
ata Spatial interpolation methods verification
I 1 AT T T T T T T T T T T T T I
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: : IDW RF ! MAE .
I
1 Pi0s1 1 1 I
: 72020 : : :
1 Meteorological 1 1 [
: data ; TPS SVM ! RMSE |
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: selection division : : :
| I 1

Fig. 2 Flow chart of rainfall interpolation
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characteristics with the model's overall performance. The
IDW algorithm is as follows, implemented using the gstat
package in R:

Z?:l d%}Z (i)
1
Z?:l ar

[

Z = (3)

where Z is the grid value of the interpolation point
to be simulated; Z (x;) is the measured value of the
i (i =1,2,3,...,n) meteorological station; n is the number
of sample points; d; is the distance from the interpolation
point to the 7 site.

3.4 Co-kriging

Co-kriging is a multivariate geostatistical estimation
method developed on the basis of Kriging. It adds auxil-
iary information that is highly correlated with variables as
covariates to the Kriging interpolation process. It not only
considers the spatial autocorrelation of independent vari-
ables. but also considers the correlation between covariates
and independent variables (Knotters et al. 1995). Conse-
quently, it requires the estimation of both the variograms of
individual variables and the cross-variograms between the
target and covariates, thereby improving prediction accu-
racy in cases where auxiliary information is available. The
method is implemented using the automap and gstat pack-
ages in R, with elevation serving as the primary covariate.
The semivariogram is automatically fitted using the autofit-
Variogram function, which evaluates multiple models base
on their goodness-of-fit to the sample data (Pebesma 2004,
Hiemstra et al. 2009). Co-kriging theoretical model formula
(Deutsch and Journel 1997):

N M
Z(So) = a:Z(S)+ Y by (S;) 4)
i=0 =0

where ¢ and 7 denote the indices of the independent variable
and covariate, respectively. Sy represents the location of the
point to be interpolated. S; and S; indicate the locations
of the observation points for the independent variable and
covariate around Sy, respectively. Z (.S;) and Z (S;) are the
measured values of the independent variable and covariate
at points ¢ and j, respectively. a; and b; are the unknown
weights of the independent variable and covariate at points ¢
and j, respectively. 7 is the interpolation result at the point
So. N and M represent the number of measurement points
for the independent variable and covariate Sy, respectively.
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3.5 Random forest

The random forest spatial interpolation method is a non-
parametric spatial prediction technology based on ensemble
learning (Breiman 2001). It captures spatial heterogeneity
and nonlinear relationships by constructing multiple regres-
sion decision trees. The model is implemented using the
ranger package in R, configured with 500 trees. The core
principle involves using Bootstrap resampling to generate
several training subsets. Each subset independently trains
the decision tree and introduces random feature selection to
reduce the model variance (Breiman 2001), and finally out-
puts the interpolation result through the predicted mean of
the whole tree. This method does not need to preset data dis-
tribution assumptions and can adaptively process complex
spatial structures. It can automatically identify key environ-
mental covariates (such as elevation, slope, etc.) through
feature importance assessment, in which the built-in Out-of-
Bag error estimation provides model uncertainty quantifica-
tion. In mathematical expression, Cutler et al. (2012) defined
n as a dimensional random vector X = (z1, ..., xn)T repre-
senting the input variable, Y as the output variable (rainfall),
and its joint distribution is Ex y = (X,Y"). The prediction
function f (z) is constructed by minimizing the expected
loss function L (Y, f (z)), which is represented by the fol-
lowing formula:

Exy (L(Y, f(X))) ®)

In the random forest regression model, when the least
squares method is used to minimize the prediction error, its
mathematical expression can be expressed as a formula (6).

f(X)=E(Y|X =x) (6)

This method constructs multiple base predictors ' base
learners 'hy (2),...,hy (z) and integrates their outputs
into a' joint predictor 'f (). Finally, the average prediction
value shown in formula (7) is used as the final result for the
regression problem.

F@) = ha (@) ™)

n=1

3.6 SupportVector machine

Support vector regression (SVR) is a non-parametric spa-
tial prediction method based on statistical learning theory
(Drucker etal. 1996). Its core idea is to map low-dimensional
space to high-dimensional feature space through kernel
function, and construct the optimal regression hyperplane
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in this space. This method is particularly suitable for pro-
cessing spatial data with complex nonlinear relationships
and can still maintain good performance in the case of small
samples (Salcedo-Sanz et al. 2016). In this study, SVR is
used for spatial interpolation of rainfall, which is character-
ized by elevation, latitude and longitude, and rainfall is the
target. By optimizing the regularization parameter C' = 10,
insensitive parameter € = 0.1 and the kernel parameter
for the radial basis function (RBF) is automatically and heu-
ristically determined by the built-in procedure of the e1071
package (Zhang 2024). the optimal parameter combination
is determined by cross validation to ensure the generaliza-
tion ability of the model. The mathematical model of SVR
is achieved by minimizing the following objective function:

1
1 *
Irgniﬂsz-i-CZ(&'ng) ®)
i=1
yi—wlz, —b <e+§
subject to wlw;+b—y;, <e+& ©)

where w is the weight vector, x; is the vector of the input
value, b is the bias term, € is the insensitive loss param-
eter, and y; is the actual output value. C' is the regularization
parameter, and §; and & are relaxation variables (Zhang and
ODonnell 2020). SVR uses kernel trick to deal with non-
linear problems. The commonly used radial basis function
(RBF) kernel is defined as:

RFB
Kie,z)= { exp (—lle —2'|1°) (19

where ~ represents the distance threshold from the hyper-
plane to the support vector, which is used to effectively
distinguish different types of samples. ||z — 2| represents
the Euclidean square distance from the sample point to the
hyperplane (Raghavendra and Deka 2014).

3.7 Gaussian process regression

Gaussian process regression (GPR) is a nonparametric spa-
tial interpolation method based on Bayesian framework,
which shows unique advantages in the field of meteorol-
ogy and hydrology (Chiles and Delfiner 2012). This method
regards the rainfall field in the target area as the realiza-
tion of the Gaussian random process, and characterizes
the spatial dependence by the covariance function, includ-
ing the square exponential function or the Matérn function
(Keriven et al. 2018). The model is implemented using the

kernlab package in R, employing the Gaussian kernel with
automatic parameter determination (Zhang and Liu 2025).
Its core model can be expressed as:

V=fX)+¢ (11)

where Y is the observed value; f (X) is the underlying ran-
dom function; X is the input vector; £ is the Gaussian noise
of variance o2 (here,02 = 0.1),§ N (0,02). In Gaussian
process regression, each input variable x has a random vari-
able f (x), that is, the value of the random function at the x
position. The posterior distribution of the observed value Y
and the joint prior distribution of the observed value Y and
the predicted value y are:

Y ~N(0,K(X,X)+o021,) (12)

L o[ FRR KT ) elR K] a3

where K (X, X) = (K;;) is a symmetric positive definite
covariance matrix, and the matrix element (X;;) measures
the correlation between K; and K; through the kernel func-
tion.K (z,,X) = K(X,x,)" is the covariance matrix of
test set « and training set X. K (x.,x,) is the covariance
of the test set x, itself. I,, is an n-dimensional unit matrix.
Then the posterior distribution of the predicted value y can
be obtained, ¥ and i are the mean and variance of the pre-
dicted value y, respectively.

3.8 Validation strategy

To comprehensively evaluate the performance and spatial
robustness of the interpolation methods, this study adopt a
two-tier validation strategy. First, a standard random split-
ting procedure is employed, allocating 70% of the meteoro-
logical stations to the training set and the remaining 30% to
the test set, ensuring a statistically representative data parti-
tion for assessing overall predictive accuracy. In order to
further evaluate whether the performance of the model is
affected by the spatial clustering of the data, this study uses
the global Moran 's index to perform spatial autocorrelation
analysis on the interpolation residuals to verify the spatial
independence of the model errors (Asokan et al. 2025), thus
providing a statistical basis for evaluating the effectiveness
of the random segmentation verification scheme in this
study.

3.9 Evaluation
Cross-validation was employed to evaluate the accuracy of

the spatial interpolation. Specifically, 87 stations from the
full dataset are randomly selected as test samples, and the

@ Springer
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remaining stations are used as training samples for spatial
interpolation. The interpolation algorithms simulate the
rainfall values at the test sites, assuming the true values are
unknown and the performance is assessed by comparing
these simulated values with the actual measurements. The
evaluation metrics include Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Coefficient of Determi-
nation (R?), and Pearson Correlation Coefficient (CC). The
formulas are as follows:

1 n
MAE = — Zai — Lxi
LA

(14)
=1
RMSE %Z — Zx)? (15)
i=1
R2 1_2?1(2 _ZM‘)2 (16)
S (Zai = Za)”
Sy (= 2) (2~ 2) -
ml Zoi = Z.)\X, (20— 7))

where n is the number of sites in the test sample; Z,; is the
measured value of the—ith site; Z); is the estimated value
of the i—th site. Z, is the average value of the measured
values of all sites. Z) is the average value of the interpo-
lated estimated values. n is the number of sites involved in
verification.

4 Results

4.1 Comparison of interpolation accuracy of
different methods

The variable selection strategy is determined through a pre-
liminary evaluation of covariate combinations (Appendix

Table 6). The results indicate that using only longitude and
latitude generally yields superior statistical metrics across
all methods. Nonetheless, given the significant topographic
relief of the Loess Plateau, elevation is a physically criti-
cal determinant of rainfall patterns. Therefore, to ensure
physical rationality and to maintain a consistent basis for
comparing the ability of different methods to incorporate
topographic information, we adopt a unified set of covari-
ates (longitude, latitude, and elevation) for the Co-kriging,
RF, SVM, and GPR methods. In contrast, the TPS and IDW
methods maintain the traditional two-dimensional approach
(longitude and latitude only). This variable selection strategy
not only ensures the rationality and comparability between
methods but also takes into account the actual needs of spa-
tial interpolation in complex terrain areas.

This study systematically evaluated the performance of
six spatial interpolation methods in daily rainfall prediction.
Based on observed and predicted values (Table 3), the actual
range of rainfall predicted by each method is TPS: 0-197.97
mm/d; IDW: 0-189.58 mm/d; Co-kriging: 0-391.19 mm/d;
RF: 0-146.45 mm/d; SVM: 0-97.98 mm/d; GPR: 0-119.14
mm/d. In terms of accuracy evaluation, both MAE and
RMSE indicated that IDW performed best (0.68 mm/d and
2.75 mm/d), followed by TPS (0.70 mm/d and 2.76 mm/d).
Notably although the MAE of Co-kriging is at a medium
level (0.80 mm/d), its RMSE is significantly higher (3.58
mm/d), which may be due to the sensitivity of the method to
extreme rainfall events. The correlation analysis indicated
that the traditional methods showed stronger correlation
while maintaining the prediction accuracy. The correlation
coefficient of TPS and IDW was the highest (CC=0.85).
In machine learning methods, RF and GPR (CC=0.82 and
0.81) performed better than SVM (CC=0.79). The results
suggest that the traditional spatial interpolation methods
(TPS and IDW) perform well in all indicators, especially in
maintaining a high correlation coefficient while achieving
a low prediction error. In contrast, although some machine
learning methods (such as RF and GPR) have achieved
acceptable results, their overall performance remained infe-
rior to that of the traditional interpolation technique.

Table 3 Six spatial interpolation schemes for four statistical indicators (CC, R%, RMSE and MAE)

Models Variables CC MAE (mm/d) RMSE (mm/d) R?
Value 95% CI Value 95% CI Value 95% CI

TPS Lon, lat 0.845%** 0.698 [0.693, 0.703] 2.758 [2.754,2.763] 0.713 [0.704, 0.722]
IDW Lon, lat 0.846%** 0.678 [0.673, 0.682] 2.751 [2.746, 2.755] 0.715 [0.706, 0.724]
Co-kriging Lon, lat, elevation 0.752%** 0.797 [0.791, 0.802] 3.584 [3.578, 3.590] 0.516 [0.495, 0.536]
RF Lon, lat, elevation 0.820%*** 0.793 [0.788, 0.798] 2.974 [2.969, 2.979] 0.667 [0.657,0.676]
SVM Lon, lat, elevation 0.785%** 0.774 [0.768, 0.779] 3.237 [3.231, 3.242] 0.605 [0.594,0.617]
GPR Lon, lat, elevation 0.813%** 0.805 [0.799, 0.809] 2.998 [2.992, 3.002] 0.661 [0.652,0.671]

The symbol *** indicates that the correlation between observations and predictions is statistically significant at the 0.1% significance level
(p<0.001). Bold indicates the lowest MAE and RMSE values for the best interpolation scheme (highest CC and R?). Lon, lat represent longi-

tude, latitude respectively.95% CI represents 95% confidence interval
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4.2 Performance of interpolation methods on
extreme rainfall indices

Based on the 11 extreme rainfall indices recommended by
the World Meteorological Organization (WMO) (Wu et al.
2016; Wang et al. 2017), the prediction performance of six
spatial interpolation methods for extreme rainfall indices
was systematically evaluated. According to the performance
of each index (Fig. 3), the traditional method is better than
the machine learning method, among which TPS and IDW
are the most prominent, and the average correlation coef-
ficients (r) of the two are 0.79 and 0.78, respectively. These
two traditional methods show stable high-performance in
most extreme rainfall index predictions. Among the machine
learning methods, GPR performed best (average r=0.75),
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Fig. 3 The 11 extreme rainfall indices were continuous drought days
CDD (d), continuous wet days CWD (d), rainfall intensity SDII
(mm/d), single-day maximum rainfall Rx1day (mm), five-day maxi-
mum rainfall Rx5day (mm), strong rainfall RO5P (mm), extreme rain-

especially in terms of SDII (0.78) and Rx5day (0.73). RF
performed best in PRCPTOT prediction (r=0.88), and sup-
port vector machine (SVM) had a unique advantage in CWD
prediction (r=0.67). Notably, Co-kriging demonstrated the
weakest overall performance, with an average correlation
coefficient of 0.65.

Further analysis indicated that different interpolation
methods exhibit distinct strengths depending on the type of
extreme rainfall index. The predictions for CDD and R10
were relatively insensitive to the choice of method, with
correlation coefficients remaining stable across models,
ranging from 0.77-0.79 and 0.80-0.81, respectively. Nota-
bly, for PRCPTOT prediction, machine learning methods
generally outperformed traditional approaches, with RF
achieving the highest correlation coefficient of 0.88.
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4.3 Comparison of verification results of rainfall in
different ecological zones

The Fig. 4 shows that the interpolation accuracy of the C
ecological area is the best, and the average values of MAE
and RMSE are 0.49+0.006 mm/d and 2.23+0.006 mm/d,
respectively, which are significantly lower than those of
other ecological areas. The average MAE and RMSE were
0.87£0.007 mm/d and 3.25+0.008 mm/d, respectively, and
the average R? was only 0.45+0.03. The C ecological zone
is located in the northwest of the Loess Plateau. The annual
average rainfall is only 100400 mm, and the spatial vari-
ability of rainfall events is small. Secondly, the high altitude
but flat terrain characteristics of the area reduce the difficulty
of spatial interpolation. In most ecoregions (A1, A2, B1, C,
D), TPS and IDW performed best, MAE and RMSE in these
ecoregions were 7% —50% lower than other methods, and R?
increased by 0.07% —40%. TPS (MAE=0.71+0.007mm/d,
RMSE=2.94+0.007mm/d, R?=0.73+0.010)
was better than IDW (MAE=0.71+0.008mm/d,
RMSE=3.05+0.008mm/d, R>=0.70+0.014) in B2 sub-
region of loess hilly-gully region. It can be seen from the
figure that the Co-kriging method has regional limitations.
In the D ecological area (earth-rock mountain area and val-
ley plain area), the Co-kriging method performs the poorest
performance. MAE=0.88+0.006 mm/d (22% higher than
TPS), RMSE=4.19+0.006 mm/d (50% higher than TPS),
R%2=0.45+0.019 (40% lower than TPS). Based on the com-
prehensive analysis results, it is recommended to adopt dif-
ferentiated interpolation strategies in different ecological
regions: TPS or IDW with higher computational efficiency
can be used in (Al, A2, B1, C, D) ecological regions; tPS
was preferred in B2 ecological area. For the Co-kriging
method, it should be avoided in the D ecological region,
but in the C ecological region, its interpolation accuracy is
comparable to that of TPS and IDW.

4.4 Seasonal variation of spatial interpolation
accuracy of daily rainfall

The Fig. 5 shows that the error has seasonal characteristics.
From the trend of MAE and RMSE, it can be seen that the
average error MAE=2.25mm/d, 2.10mm/d) and root mean
square error (RMSE=6.12mm/d, 5.84mm/d) of each inter-
polation method in July and August are significantly larger
than those in other months, showing a unimodal distribution.
The error gradually increased from January to July, peaked
in July, and decreased from August to December. The error
in December was the smallest (MAE=0.06 mm/d), which
was consistent with the seasonal fluctuation of rainfall. This
seasonal pattern is primarily driven by two factors: first, the
summer monsoon season brings intense convective rainfall
events that are highly localized and spatially heterogeneous,
challenging the representativeness of station-based obser-
vations; second, these months experience the highest fre-
quency of extreme rainfall, which significantly increases
error variance, as evidenced by the upper outliers in the
July—August boxplots (July MAE maximum=3.97 mm/d,
August MAE maximum=3.63 mm/d).

Comparison of the accuracy indicators of different meth-
ods, it can be found that there are differences in the per-
formance of different interpolation methods. The MAE and
RMSE medians of TPS and IDW are the lowest throughout
the year (such as TPS, IDW July MAE median=2.11mm/d,
2.02mm/d), and R? is stable at a high level (TPS, IDW
annual R? median>0.6). However, the RMSE median of
Co-kriging was higher throughout the year, peaking in July
(7.15 mm/d). The R?> median of all methods in July and
August decreased by about 0.2 compared with the dry sea-
son (TPS decreased from 0.81 in April to 0.61 in July), but
TPS and IDW still maintained the best fitting performance
(R? median 0.63 and 0.64 in August).
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Fig. 5 Seasonal variation of spatial interpolation accuracy of daily rainfall

Collectively, these results indicate that TPS and IDW  accuracy of Co-kriging, particularly during heavy rainfall
achieve stronger error control (lower MAE and RMSE)  periods, may reflect its strong reliance on covariate data,
and greater model stability (higher R?), yielding more  which limits its robustness under conditions of high rainfall
reliable interpolation outcomes. Conversely, the reduced  variability.
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4.5 Interannual variation of spatial interpolation
accuracy of daily rainfall

Based on the accuracy evaluation of daily rainfall spatial
interpolation results from 1980 to 2020 (Fig. 6), the perfor-
mance differences of six interpolation methods (TPS, IDW,

Co-kriging, RF, SVM, GPR) on long time scales were ana-
lyzed. Comparative results indicated that TPS and IDW per-
formed best in the spatial interpolation of daily rainfall, and
their MAE decreased by 15.9% compared with other meth-
ods. The RMSE is reduced by 0.21~0.47 mm/d compared
with other methods, 0.83 mm/d compared with Co-kriging,
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Fig. 6 Interannual variation of spatial interpolation accuracy of daily rainfall
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and the performance is improved by 30.3% compared with
Co-kriging. From 1980 to 2016, the R? of TPS and IDW was
basically stable at 0.71 mm/d, and TPS was slightly higher
than IDW in a few years. The error indices of RF and GPR
were in the middle, the multi-year average values of MAE
were 0.79 mm/d and 0.80 mm/d, the multi-year average
values of RMSE were 2.95 mm/d and 2.98 mm/d, and the
multi-year average values of R?> were 0.67 and 0.66, respec-
tively. The RMSE of Co-kriging and SVM was high, espe-
cially in 1990 and 2014; the RMSE of Co-kriging showed
obvious peaks, reaching 4.04 mm/d, 3.75 mm/d and 4.08
mm/d, respectively. Correspondingly, R 2 decreased to 0.34,
0.34 and 0.38, which was the lowest among all methods,
indicating poor stability in these approaches.

4.6 Extreme rainfall events and spatial
interpolation

In order to systematically evaluate the performance of dif-
ferent spatial interpolation methods during heavy rainfall
events on the Loess Plateau, this study selected rainfall data
on July 29, 2011 (daily rainfall measured range of 0-111.9
mm), and simulated the regional rainfall distribution with a
spatial resolution of 0.001°. The interpolation results of the
six methods (Fig. 7) show significant differences. The pre-
diction range of TPS (0-75.53 mm) was lower than the mea-
sured range (ratio of predicted-to-observed maxima=0.68),

which may weaken the characteristics of local heavy rainfall
due to its smoothing effect. However, its spatial distribu-
tion pattern is in good agreement with the measured rainfall
field. Although the predicted range of IDW (0-111.9 mm)
is completely consistent with the measured value, showing
good adaptability to the spatial heterogeneity of rainfall, the
interpolation results show a typical " bull 's eye pattern, "
that is, a concentric circle of high/low value bands is formed
around the site, reflecting the sensitivity of this method to
the weight distribution of discrete points. The machine
learning methods (RF, SVM, GPR) showed smooth spatial
distribution characteristics, and the prediction ranges were
0-70.57 mm, 0-55 mm, and 0-97.63 mm, respectively.
Although there is no extreme value deviation, the prediction
of heavy rainfall is still underestimated. Co-kriging showed
a significant overestimation in the southeastern mountain-
ous areas (A2, B2, D ecological areas) (the black part is
the predicted rainfall> 112mm), and the predicted value
in some areas exceeded the measured maximum value by
416.99mm/d. Notably, these abnormally high value areas
only account for less than 1% of the total area of the study
area, and their spatial distribution is highly consistent with
the terrain mutation area (elevation gradient>176.5 m/km),
suggesting that the synergistic effect of terrain factors and
extreme rainfall may lead to model failure. It is speculated
that the model fails under the combined action of elevation
mutation and extreme rainfall.
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Fig. 8 Spatial autocorrelation of
interpolation errors measured by
Moran's I

901°0

4.7 Spatial autocorrelation analysis of interpolation
errors

The analysis demonstrates that all interpolation methods
(TPS, IDW, Co-kriging, RF, SVM, and GPR) show non-
significant spatial autocorrelation in their errors (global
Moran's I: 0.012-0.106, P>0.25), indicating spatially ran-
dom error distributions and strong spatial robustness across
all approaches. Among these, SVM exhibited relatively
higher spatial dependency (global Moran's I: 0.106), yet
still within the non-significant range, suggesting consistent
spatial randomness in error patterns (Fig. 8).

The spatially random distribution of errors demonstrates
that model performance is not artificially inflated by spatial
clustering in the data, thereby supporting the validity of the
conventional random split validation for this specific study.

5 Discussion

5.1 Uncertainty analysis and abnormal point
recognition of Co-kriging

The comparative analysis of the six interpolation methods
revealed that the Co-kriging approach exhibited notable
deficiencies in the spatial interpolation of daily rainfall. This
method not only produces a higher average error compared
to traditional methods such as TPS and IDW, but also has the
maximum root mean square error (RMSE=3.58 mm/d) and
the lowest coefficient of determination (R?=0.51) among
the six evaluated methods. Further analysis found that the
six abnormal points with predicted rainfall greater than
250 mm/d were all from the prediction results of Huashan
station (SiteID: 57046) (Table 4). Specifically, on July 26,
1991, the measured rainfall was only 0.0 mm, while the
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Table 4 Co-kriging interpolation of predicted rainfall exceeding
250 mm (Station: Huashan)

Date Observed Predicted  Longi- Lati- Eleva-
rainfall rainfall tude (°) tude tion
(mm) (mm) () (m)
1989/07/10  28.3 333.60 110.08 34.48 2064.9
1989/08/16  64.00 326.14 110.08 34.48 2064.9
1991/07/26 0.0 308.74 110.08 34.48 2064.9
2001/08/15 0.0 314.19 110.08 34.48 2064.9
2012/08/13 0.0 269.85 110.08 34.48 2064.9
2014/07/29 0.0 391.19 110.08 34.48 2064.9

predicted value of Co-kriging was as high as 308.74 mm,
and the relative error was 308.74 mm. On July 29, 2014, the
measured value was 0.0 mm, and the predicted value was
391.19 mm. The predicted values of the other four abnormal
points were also between 250400 mm/d, while the mea-
sured values did not exceed 64 mm/d. This serious over-
estimation phenomenon directly led to: the RMSE before
and after 1990 and 2010 reached 4.08 mm/d, which was
significantly higher than in other years; the coefficient of
determination of the same period decreased to 0.34, forming
a significant time series peak. The reason is that Huashan
station is an elevation anomaly point in the study area, and
its altitude (2064.9 m) is significantly higher than that of
the surrounding stations (300-600 m), forming a significant
topographic mutation.

This systematic overestimation is a manifestation of
methodological limitation rather than an issue of input
data quality. The pronounced elevation differences present
a significant challenge for Co-kriging in modeling spatial
correlation. Since Co-kriging method relies on elevation
as a key covariate, and the elevation difference between
Huashan and the surrounding stations exceeds 1000 m, it
is difficult for the semivariogram to accurately describe this
non-stationary spatial relationship. During heavy rainfall
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events, the algorithm tends to overemphasize the correlation
between elevation and rainfall, inappropriately extrapolate
the high rainfall characteristics of Huashan to low altitude
areas, resulting in a serious overestimation of the predicted
values.

This phenomenon highlights the limitations of the Co-
kriging method in extreme terrain areas, that is, when there
is significant heterogeneity in the elevation distribution of
sample points, the interpolation method based on the sta-
tionary hypothesis may produce bias. In contrast, methods
such as TPS and IDW demonstrate greater stability under
these conditions, as they do not explicitly incorporate eleva-
tion as a covariate.

The results of this study show that the Co-kriging method
performs worst among the six interpolation methods, and
its accuracy is even lower than that of the ordinary Kriging
(OK) method. This finding is consistent with the research
conclusion of Liu et al. (2021), that is, when using the grid-
ded rainfall data set, the performance of the multivariate
method CoK is not as good as the univariate method ordi-
nary Kriging. The core assumption of the CoK method is
that there is a strong correlation between rainfall and alti-
tude although the study of Israelsson et al. (2020) shows that
CoK can indeed improve the interpolation accuracy based
on point data in dense rain gauge networks. However, the
low correlation between rainfall and altitude is the key factor
leading to the poor performance of CoK in this study. Many
scholars (He et al. 2019; Herrera et al. 2019) have confirmed
that when the correlation between rainfall and elevation is
weak, the introduction of elevation covariates will reduce
the interpolation accuracy. Especially in the Loess Plateau,
complex topographic features may further weaken the spa-
tial correlation between rainfall and elevation.

5.2 Adaptability of machine learning methods

The overall performance of the machine learning meth-
ods RF, SVM and GPR falls between traditional methods
and geostatistical techniques. Among these, RF exhibits
the best performance, with the lowest RMSE and highest
R?, followed by GPR, while SVM vyielded the poorest per-
formance. These findings are consistent with the findings
of Chutsagulprom et al. (2022). Moreover, the study also
highlights that in comparison to traditional interpolation
methods, machine learning approaches such as ANN dem-
onstrate relatively poor accuracy in rainfall estimation.

The advantage of machine learning methods lies in their
ability to capture complex nonlinear relationships between
rainfall and topographic variables. For instance, GPR
can adaptively adjust the spatial correlation by automati-
cally learning the covariance function, thereby eliminat-
ing the dependence of traditional geostatistical methods on

semivariograms. However, this method exhibits a systematic
underestimation issue in heavy rainfall events. The maxi-
mum rainfall measured on July 29,2011 was 111.9 mm, and
the predicted maximum values of RF, SVM and GPR were
70.57 mm, 55 mm and 97.63 mm, respectively. The under-
estimation is 13% —51%. This is because machine learning
smoothes the real value of the variable to find the minimum
variance, thereby promoting a more uniform surface. The
smoothing effect causes the small value to be overestimated
and the large value to be underestimated (Yamamoto 2005;
De Almeida et al. 2025). The systematic underestimation
of extreme rainfall by machine learning models (RF, SVM,
GPR) stems from inherent learning mechanisms operating
under imbalanced data distributions. Daily rainfall data is
dominated by zero or low-intensity values, with extreme
events representing rare occurrences in the distribution
tail. This skewed structure induces two mechanistic biases:
First, models optimized to minimize global loss functions
such as Mean Squared Error prioritize prediction accuracy
for the majority of low-to-medium intensity rainfall, as the
optimization process penalizes errors on frequent small
values more severely than those on rare extremes, pulling
predictions toward the conditional mean. Second, the inher-
ent smoothing effects of the algorithms themselves—such
as prediction averaging in RF, smooth posterior means in
GPR, and smooth outputs from SVM-RBF—act as implicit
regularization that suppresses overfitting but also dampens
responsiveness to true high-intensity signals (Yamamoto
2005; De Almeida et al. 2025). Consequently, to maintain
stability across the overall dataset, the models sacrifice
accuracy in the distribution tails, leading to significant
underestimation of extreme events.

5.3 Temporal resolution effects in rainfall
interpolation

The spatial interpolation of daily rainfall provide essential
high-precision data for applications such as hydrological
simulation, ecological restoration and disaster warning.
However, the results of this study show that the correlation
coefficient of daily rainfall interpolation is generally low,
which is mainly due to the combined effect of two factors.
From the perspective of time scale, the spatial variability
of daily rainfall is significantly stronger than that of the
monthly scale and the annual scale. Liu et al. (2020) dem-
onstrated that the flow simulation is more sensitive to the
rainfall spatial interpolation scheme on the short time scale,
whereas differences in interpolation schemes at the monthly
and annual scales have a relatively minor impact. This find-
ing aligns with the results of Liao and Li (2024) who applied
radial basis function network and BP neural network. Both
show that the simulation accuracy of daily rainfall data is
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significantly lower than that of monthly average data. From
a regional perspective, the rainfall in the Loess Plateau
shows an obvious decreasing trend from southeast to north-
west. The spatial distribution of daily rainfall is strongly
influenced by both topographic uplift and patterns of water
vapour transport, resulting in pronounced regional hetero-
geneity (Zhao et al. 2018). This complex spatial heterogene-
ity makes the adaptability of different interpolation methods
in local areas significantly different, thus further amplifying
the overall error. Although in theory, daily rainfall interpo-
lation offers higher temporal resolution and the potential
for more accurate data, its practical application remains
challenging due to the combined constraints of time-scale
effects and pronounced regional variability. Thus, it is nec-
essary to develop a new interpolation method that is more
suitable for the spatial variability of daily rainfall patterns.

5.4 Implications of interpolation uncertainty for
hydrological and erosion modeling

The error characteristics exhibited by different interpolation
methods significantly impact hydrological and erosion mod-
eling on the Loess Plateau. In terms of capturing extreme
rainfall, systematic underestimation directly leads hydro-
logical models to underestimate peak flow and total runoff
volume. For the erosion-sensitive Loess Plateau, this sub-
sequently causes soil erosion models to significantly under-
estimate erosion amounts from individual rainfall events,
ultimately affecting the design standards and effectiveness
evaluation of soil and water conservation measures (Yang
et al. 2020). Conversely, the systematic overestimation by
Co-kriging in steep terrain creates the opposite problem
(Jin et al. 2016), potentially leading to overestimated run-
off generation and erosion risk in mountainous watersheds,
resulting in misallocation of disaster prevention resources.
Spatial distribution errors—the "bull's eye" effect of IDW
and the spatial autocorrelation of SVM errors—distort the
true spatial pattern of rainfall input (Righi and Basso 2016).
In distributed hydrological models, this disrupts the accu-
racy of runoff concentration path simulations and leads to
misidentification of erosion hotspot areas.

Therefore, selecting interpolation methods that achieve
a better balance between extreme value capture and spatial
distribution fidelity is crucial for enhancing the reliability of
hydrological and erosion modeling. The evaluation frame-
work established in this study provides scientific basis for
such selection.

Although this study takes the Loess Plateau as a case
study, the methodology holds potential for cross-regional
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application. When applied to different regions in the future,
it should be validated and adjusted according to local topo-
graphic and climatic characteristics to ensure its scientific
validity and reliability (Amini et al. 2019). Complex ter-
rain often leads to strong spatial heterogeneity in environ-
mental factors such as climate, soil, and hydrology, thereby
imposing higher demands on spatial interpolation methods
(e.g., Kriging, IDW, etc.). Compared to flat and homoge-
neous areas, complex terrain provides a more rigorous test-
ing ground for method comparison, better examining their
robustness and applicability (Casellas et al. 2020; Lussana
et al. 2018). Successful validation in such regions can offer
more universal and valuable scientific references for other
areas, including flat regions.

6 Conclusion

This study systematically evaluated the performance of six
spatial interpolation methods for daily rainfall in the Loess
Plateau. The results indicate that TPS and IDW exhibit the
highest overall accuracy and stability. While TPS achieves
the best interpolation effect, IDW produces comparable
accuracy but introduces a pronounced “bull’s eye” pattern.
The Co-kriging method performs adequately in flat areas but
shows significant overestimation in regions with abrupt ele-
vation changes. Overall, machine learning methods under-
perform relative to traditional approaches, with even the
better-performing algorithms, RF and GPR, as well as TPS,
systematically underestimating extreme rainfall events.

Interpolation accuracy exhibits pronounced spatial and
temporal heterogeneity. Temporally, errors peak during the
summer months (July—August), yet traditional methods
maintain good stability during the rainy season. Spatially,
the highest accuracy is observed in sandy land and agri-
cultural irrigation areas (C area), whereas the loess plateau
gully region (Al area) demonstrates the lowest accuracy.
TPS and IDW consistently provide superior performance
across most ecological zones (A1, A2, B1, C, D), with TPS
being particularly suitable for the B2 sub-area of the loess
hilly and gully region. In contrast, Co-kriging is limited in
applicability in rocky mountain and valley plain regions (D
area) due to overestimation in areas with strong elevation
gradients.

These findings provide a robust basis for selecting appro-
priate rainfall spatial interpolation methods under the unique
complex terrain conditions of the Loess Plateau, contribut-
ing to improved hydrological simulations and informed eco-
logical management.
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