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A B S T R A C T

Deep learning (DL) models have shown exceptional accuracy in plant disease identification, yet their practical 
utility for farmers remains limited due to a lack of professional and actionable guidance. To bridge this gap, we 
developed CDIP-ChatGLM3, an innovative framework that synergizes a state-of-the-art DL-based computer vision 
model with a fine-tuned large language model (LLM), designed specifically for Crop Disease Identification and 
Prescription (CDIP). EfficientNet-B2, evaluated among 10 DL models across 48 diseases and 13 crops, achieved 
top performance with 97.97 % ± 0.16 % accuracy at a 95 % confidence level. Building on this, we fine-tuned the 
widely used ChatGLM3-6B LLM using Low-Rank Adaptation (LoRA) and Freeze-tuning, optimizing its ability to 
deliver precise disease management prescriptions. We compared two training strategies—multi-task learning 
(MTL) and Dual-stage Mixed Fine-Tuning (DMT)—using a different combination of domain-specific and general 
datasets. Freeze-tuning with DMT led to substantial performance gains, achieving a 33.16 % improvement in 
BLEU-4 and a 27.04 % increase in the Average ROUGE F-score, surpassing the original model and state-of-the-art 
competitors such as Qwen-max, Llama-3.1-405B-Instruct, and GPT-4o. The dual-model architecture of CDIP- 
ChatGLM3 leverages the complementary strengths of computer vision for image-based disease detection and 
LLMs for contextualized, domain-specific text generation, offering unmatched specialization, interpretability, 
and scalability. Unlike resource-intensive multimodal models that blend modalities, our dual-model approach 
maintains efficiency while achieving superior performance in both disease identification and actionable pre
scription generation.

1. Introduction

Crop pests and diseases present significant challenges to global 
agricultural production. Many farmers resort to indiscriminate pesticide 
use to manage these issues, which exacerbates environmental pollution 
and compromises food safety (Devi et al., 2022; Tudi et al., 2021). 
Traditionally, the identification of crop pests and diseases has relied on 
the expertise and experience of farmers and agricultural experts (Pathak 
et al., 2022). However, this approach is prone to errors and in
consistencies, especially in large-scale plantations where the vast crop 
areas require substantial efforts, making it easy to miss the optimal 
treatment window (Anderson et al., 2004; Brasier, 2008; Miller et al., 

2009; Spence et al., 2019; Strange et al., 2005). Accurate disease iden
tification is key to effective disease management, as it enables targeted 
treatments, minimizes crop loss, and reduces unnecessary pesticide us
ages, ultimately promoting healthier crops and more sustainable agri
cultural practices (Carvajal-Yepes et al., 2019; Ristaino et al., 2021).

The continuous development of deep learning (DL) technology pro
vides a promising solution for high accuracy detection of crop diseases 
(Abade et al., 2021; Fang et al., 2015; Roy et al, 2021; Saleem et al., 
2019; Shoaib et al., 2023). Compared to traditional manual methods 
that rely on farmers’ personal experience, knowledge, and consultations 
with experts, DL-based image classification models offer significantly 
higher accuracy in disease diagnosis (Rahman et al., 2020). Various 
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deep learning techniques have been developed and applied to achieve 
high accuracy in identifying and diagnosing plant diseases (Tian et al., 
2024). For example, Too et al. (2019) evaluated the performance of 
state-of-the-art deep convolutional neural networks including Dense
Nets, VGGNet, Inception V4, and ResNet (with 50, 101, and 152 layers) 
on plant disease leaf identification and classification, and found that 
DenseNets achieved the highest accuracy of 99.75 %. Borhani et al. 
(2022) compared Convolutional Neural Networks (CNNs), Vision 
Transformers (ViTs), and their combination across various datasets, 
concluding that ViTs generally outperformed CNNs, particularly in 
complex scenarios. While these results demonstrate the high maturity 
and effectiveness of DL models like CNNs and ViTs in controlled settings, 
it is crucial to consider the variability in performance under real-world 
conditions. Factors such as lighting, disease severity, and crop diversity 
can affect model accuracy, underscoring the need for further research 
into robust, field-deployable models (Tian et al., 2024). Additionally, 
the practical application of these technologies by farmers remains a 
challenge. Even with accurate disease identification, many farmers, 
particularly those with limited agronomic knowledge, struggle to make 
informed decisions regarding the timing and choice of crop protection 
products (Qing et al., 2023). These farmers require clear, interactive 
guidance that not only identifies the disease but also provides actionable 
recommendations on which fungicide to use, when to apply it, and the 
correct dosage. Addressing this gap is essential to maximizing the ben
efits of artificial intelligence (AI) in agriculture, ensuring effective crop 
protection while minimizing resource waste and environmental impact.

Large language models (LLMs) are well-suited to address issues like 
providing clear, interactive guidance to farmers because they excel in 
understanding and generating human-like text (Raiaan et al., 2024; 
Zhao et al., 2023). They enable users to obtain timely, readable re
sponses through direct, interactive questioning. Research has demon
strated the effectiveness of LLMs in agriculture, particularly in crop 
management (Raiaan et al., 2024; Yenduri et al., 2024). For example, 
based on Chat Generative Pre-trained Transformer (ChatGPT), a LLM 
developed by OpenAI, Wang et al. (2022) developed a question 
answering system for crop pest control and prevention, achieving higher 
scores than the other six state-of-the-art methods. Silva et al. (2023)
evaluated popular large language models as Llama, GPT-3.5 and GPT-4 
on their ability to answer agriculture-related questions and the results 
showed that GPT-4 achieved the highest performance answering 93 % of 
the questions correctly. Qing et al. (2023) proposed a deep learning 
vision model YOLOPC and ChatGPT-4 combined method to accurately 
identify pests and disease of citrus and provide diagnostic report, 
achieving high identification and reasoning accuracy. Additionally, 
multimodal LLMs are also employed to solve domain specific problems, 
demonstrating superior performance on some tasks (Kerdvibulvech, 
2025). While these LLMs excel in general language tasks, they often 
struggle with domain-specific questions, such as those related to plant 
disease management, due to a lack of specialized knowledge in their 
training data (Yang et al., 2024). To address these limitations and 
enhance LLM performance in specialized fields like plant disease man
agement, researchers have explored strategies for incorporating domain- 
specific knowledge into these models. Retrieval-Augmented Generation 
(RAG) and Fine-tuning are two common ways that are used to incor
porate proprietary and domain-specific data (Gupta et al., 2024). RAG is 
particularly effective in contexts where relevant data is readily avail
able, such as farm data interpretation, producing concise and contex
tually accurate responses (Lewis et al., 2020; Swenor, 2022). However, 
its reliance on external data retrieval systems can lead to inconsistent 
performance in scenarios with limited or incomplete data (S. Xu et al., 
2024). In contrast, Fine-tuning enables the model to internalize domain- 
specific knowledge by retraining it on curated datasets, enhancing its 
ability to generate precise and contextually rich responses without de
pendency on external retrieval systems, although it involves a signifi
cant upfront cost due to the extensive data preparation and 
computational resources required (Xue et al., 2021).

This study aims to enhance the practical application of deep learning 
in crop disease management by introducing a novel dual-model inte
gration approach that combines specialized disease identification 
models with LLMs for providing tailored prescriptions. In contrast to 
previous multi-modal methods that attempt to handle image recognition 
and text generation within a single framework, our dual-model 
approach harnesses the strengths of two independently optimized sys
tems. First, we evaluate 10 computer vision models to identify 48 dis
eases across 13 crops. Next, we fine-tune the large language model 
ChatGLM3-6B using two methods to improve its domain-specific 
expertise in crop disease management. Finally, we develop CDIP- 
ChatGLM3 by combining the best-performing disease identification 
model with the fine-tuned ChatGLM3-6B to assist relevant growers in 
Crop Disease Identification and Prescription (CDIP). This dual-model 
approach not only improves the overall accuracy of diagnosis and rec
ommendations but also offers greater flexibility and scalability, allowing 
for independent upgrades and improvements to each component. As a 
result, farmers can seamlessly transition from accurate disease diagnosis 
to precise treatment recommendations, reducing costs, minimizing 
environmental impact, and preventing pesticide overuse.

2. Materials and methods

Fig. 1 presents the overall workflow for developing and deploying 
CDIP-ChatGLM3, an integrated system that combines a disease identi
fication model with a fine-tuned large language model (LLM) for crop 
disease identification and prescription (CDIP). The identification model 
development begins with collecting an extensive image dataset con
taining 48 diseases across 13 crops as well as the healthy leaves for each 
of the 13 crops. This dataset is used to train and evaluate 10 deep 
learning models, including CNNs and Transformers, for identifying the 
health status of crops. After evaluation, the best-performing model is 
selected to classify crop images as either healthy or infected with a 
specific disease. Meanwhile, for LLM, disease management information 
is extracted from 13 well-established books, encompassing the diseases 
and crops in the dataset, and used to construct a Supervised Fine-Tuning 
(SFT) instruction-following dataset. This dataset was then used to fine- 
tune the LLM to enhance its expertise in crop disease management and 
language proficiency. The fine-tuned model is further evaluated and 
compared with the original models and three popular models on 
specialized dataset. The disease identification model is then integrated 
with the fine-tuned LLM, enabling an interactive system for crop disease 
diagnosis and prescription.

2.1. Disease identification models

2.1.1. Dataset collection
The dataset used in this experiment consists of 100,989 images 

covering 48 diseases across 13 different crops, including apples, cher
ries, citrus, corn, grapes, peaches, peppers, potatoes, rice, soybeans, 
strawberries, tomatoes, and wheat, all of which are publicly available 
(Table 1). Both healthy and diseased images for each crop were included 
to ensure comprehensive coverage for high-precision disease diagnosis. 
The images were collected under diverse conditions, including both 
laboratory setups and real-world field environments, to enhance the 
robustness of the model (Tian et al., 2024).

The images were sourced from various reputable datasets, including 
those from Northwest A&F University, and GitHub repositories 
(Acharya, 2020; Cruz et al., 2019; Feng et al., 2022; Mohanty et al., 
2016; Thapa et al., 2020; Xu et al., 2024; Yuan et al., 2023). We carefully 
cleaned the data by removing any corrupt or low-quality images. After 
this cleaning process, each image was labeled according to its corre
sponding disease category, enabling supervised training. We then 
employed a stratified random sampling approach to partition the labeled 
dataset into training (60 %), validation (15 %), and test sets (25 %), 
ensuring that the distribution of the disease categories in each subset 
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remained consistent with that of the overall dataset. Subsequently, data 
augmentation and preprocessing techniques were applied to the training 
subset, including random resizing, random cropping, horizontal flip
ping, and mean–standard deviation normalization. Regarding the vali
dation and test subsets, resizing, center cropping, and normalization in a 
consistent manner were applied to ensure comparability prior to their 
utilization. Thirteen representative disease images, one for each of the 
13 crops, from the training dataset are displayed in Fig. 2.

2.1.2. Model training and comparison
To identify a lightweight yet highly accurate model for disease 

identification, we chose five well-established computer vision model 
architectures, including ResNet (He et al., 2016), MobileNet (Howard 
et al., 2019), EfficientNet (Tan et al., 2019), Swin-transformer (Liu et al., 
2021), FasterNet (Jierun Chen et al., 2023). High performance models 
with different layer numbers from these architectures were selected for 
training, with their features compared in Table 2. Additionally, the 
running performance information, including the approximate GPU 
memory usage and training time, is presented in Table 2 to facilitate the 
replication of our experiments. These measurements were obtained 
using a single NVIDIA RTX 4090, with a batch size of 8 and 8 workers.

The workflow for training, testing, and selecting the most accurate 
computer vision model is illustrated in Fig. 3. The dataset was first 
cleaned to remove low-quality images and then split into training (60 
%), validation (15 %), and test sets (25 %). Each model was trained on 
the training set, with performance monitored on the validation set to 
optimize hyperparameters and prevent overfitting. After training, the 
models were evaluated on the test set using four key metrics: accuracy, 
F1-score, recall, and precision. The models’ performance was compared 
across these metrics to identify the most effective model for accurate 
crop disease identification. It is important to note that this training 
process was repeated three times to calculate a 95 % confidence interval, 
thereby quantifying the uncertainty of the results.

Table 3 outlines the hyperparameters used in training the disease 
identification models, including learning rate (Lr), optimizer, and the 
number of epochs. The learning rate (Lr) controls the step size during 
gradient descent, which directly impacts the speed and stability of 
convergence. The optimizers such as Adam or SGD (Stochastic Gradient 
Descent)—is responsible for adjusting the model weights based on the 
computed gradients. Each model was trained for a fixed number of 
epochs—50 in this case—to balance performance and computational 
efficiency.

Fig. 1. The overall technical workflow for developing and deploying CDIP-ChatGLM3. It includes, comparison of computer vision models for crop disease identi
fication, fine-tuning large language models, and the integration of both models for interactive prescription of disease management.
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Table 1 
The number of collected diseases or healthy image data for each crop. Conditions include Field (F), laboratory (L) and mixed (M).

Crop Disease Pathogen No. of 
images

Condition Data source

Apple Alternaria blotch Alternaria mali 277 F https://doi.org/10.11922/sciencedb.01627
Black rot Botryosphaeria obtusa 428 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Brown rot Monilinia fructigena 4317 L https://doi.org/10.11922/sciencedb.01627
Grey spot Pestalotiopsis spp 199 F https://doi.org/10.11922/sciencedb.01627
Healthy ​ 1812 M https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

https://www.kaggle.com/c/plant-pathology-2021-fgvc8/data
Mosaic virus Apple mosaic virus 156 F https://doi.org/10.11922/sciencedb.01627
Powdery mildew Podosphaera leucotricha 438 F https://www.kaggle.com/datasets/aibuzz/apple-leaf-disease-powdery-mildew
Rust Gymnosporangium juniperi- 

virginianae
5866 M https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

https://www.kaggle.com/c/plant-pathology-2021-fgvc8/data
Cherry Healthy ​ 2183 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Powdery Mildew Podosphaera clandestina 193 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Citrus Healthy ​ 677 F https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Huanglongbing Candidatus Liberibacter spp 5521 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Corn Grey leaf spot Cercospora zeae-maydis 2114 L https://github.com/spMohanty/PlantVillage-Dataset

Healthy ​ 2000 L https://www.kaggle.com/datasets/qramkrishna/corn-leaf-infection-dataset
Northern leaf 
blight

Exserohilum turcicum 2337 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Rust Puccinia sorghi 1946 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Grape Black measles Phomopsis viticola 1918 M https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Black rot Guignardia bidwellii 2030 F https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Downy mildew Plasmopara viticola 5061 L The Guangxi Academy of Agricultural Sciences 

https://www.scidb.cn/en/detail?dataSetId=76b39c9c435d4035b5076412c2ddc 
b61&version=V2

Leaf blight Botryosphaeria spp 962 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Healthy ​ 1450 F https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Mosaic virus Grapevine fanleaf virus 127 L https://www.scidb.cn/en/detail?dataSetId=76b39c9c435d4035b5076412c2ddc 

b61&version=V2
Powdery mildew Erysiphe necator 1085 M https://www.scidb.cn/en/detail?dataSetId=76b39c9c435d4035b5076412c2ddc 

b61&version=V2
Yellows Bois noir 1293 L https://github.com/DrAlbertCruz/Salento-Grapevine-Yellows-Dataset/tree/mast 

er
Peach Bacterial spot Xanthomonas arboricola 1805 M https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Healthy ​ 2160 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Pepper Bell bacterial spot Xanthomonas spp. 1879 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Healthy ​ 2078 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Scab Elsinoë spp 588 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Potato Healthy ​ 1317 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Late blight Phytophthora infestans 808 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Rice Bacterial blight Xanthomonas oryzae pv. 
oryzae

1023 F https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
https://doi.org/10.1016/j.biosystemseng.2020.03.020

Brown spot Bipolaris oryzae 1694 M https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
https://doi.org/10.1016/j.biosystemseng.2020.03.020

Healthy ​ 1552 M https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
https://doi.org/10.1016/j.biosystemseng.2020.03.020

Hispa Dicladispa armigera 495 M https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
https://doi.org/10.1016/j.biosystemseng.2020.03.020

Leaf blast Magnaporthe oryzae 2219 M https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
https://doi.org/10.1016/j.biosystemseng.2020.03.020

Tungro Rice tungro virus 1248 F https://www.kaggle.com/datasets/nizorogbezuode/rice-leaf-images
Soybean Angular leaf spot Pseudomonas syringae pv. 

syringae
214 F https://aistudio.baidu.com/datasetdetail/253471

Bacterial blight Pseudomonas syringae pv. 
glycinea

381 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3

Cercospora leaf 
blight

Cercospora kikuchii 1255 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3

Downy mildew Peronospora manshurica 512 L https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
Frogeye Cercospora sojina 1210 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
Healthy ​ 2425 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
Potassium 
deficiency

​ 812 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3

Rust Phakopsora pachyrhiz 1627 F https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
Target spot Corynespora cassiicola 671 L https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3

Strawbe- 
rry

Healthy ​ 2668 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Leaf scorch Diplocarpon earlianum 1740 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Tomato Bacterial spot Xanthomonas spp. 1671 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Early Blight Alternaria solani 1548 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Healthy ​ 1998 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Late blight Phytophthora infestans 1818 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Leaf mold Cladosporium fulvum 1848 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Mosaic virus Tomato mosaic virus 1215 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
Septoria leaf spot Septoria lycopersici 1714 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

(continued on next page)
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https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.41ns1rnj3
https://datadryad.org/stash/dataset/doi%3a10.5061/dryad.41ns1rnj3
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color


2.1.3. Evaluation metrics
We used four widely used evaluation metrics: accuracy, precision, 

recall, and F1-score. Accuracy represents the proportion of correctly 
classified samples out of the total number of samples in the test set. It is 
calculated using the following equation: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1) 

where True Positives (TP) and True Negatives (TN) are the correct 
predictions, and False Positives (FP) and False Negatives (FN) are the 
incorrect predictions. Recall, also known as sensitivity, measures the 
model’s ability to correctly identify positive instances. It is defined as: 

Recall =
TP

TP + FN
(2) 

Precision is the proportion of true positive predictions among all the 
samples that were predicted to be positive. The formula for precision 
calculation is as follows: 

Precision =
TP

TP + FP
(3) 

The F1-score is the harmonic mean of precision and recall, which 
considers both precision and recall, making it especially useful for 
datasets with imbalanced classes. It can be calculated as follows: 

Table 1 (continued )

Crop Disease Pathogen No. of 
images 

Condition Data source

Yellow leaf curl 
virus

Tomato yellow leaf curl 
virus

1926 L https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color

Wheat Brown Rust Puccinia triticina 2631 F https://www.kaggle. 
com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease

Healthy ​ 2697 F https://www.kaggle. 
com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease

Loose smut Ustilago tritici 939 M https://www.kaggle.com/datasets/amankumar2004/wheat-disease-dataset
Septoria Septoria tritici 446 F https://www.kaggle.com/datasets/amankumar2004/wheat-disease-dataset
Yellow rust Puccinia striiformis f. sp. 

tritici
1395 F https://www.kaggle.com/datasets/amankumar2004/wheat-disease-dataset

Fig. 2. Thirteen representative disease images from the collected disease image dataset, with one for each crop.
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F1-score = 2 ×
Precision × Recall
Precision + Recall

(4) 

2.2. Large language model and fine-tuning

2.2.1. Dataset preparation
Six datasets, including the fine-tuning specialized 13-Crop 

instruction-following dataset, general dataset Alpaca (Taori et al., 
2023), general language abilities benchmark test dataset CMMLU (Li 
et al., 2023), the customized specialized dataset for model expertise test, 
the Image Understanding Test dataset for multimodal performance test, 
and the Image Dataset introduced in Section 2.1.1, were utilized for 
training, testing, validation and benchmarking in the CDIP-ChatGLM3 
development process. The key characteristics of these datasets are pre
sented in Table 4. The acquisition process of each dataset will be 
described in detail in the following sections.

The 13-Crop Instruction-Following Dataset was derived from 13 
books covering crop cultivation and disease management, with one book 
dedicated to each crop (see STable 1). Since a high-quality fine-tuning 
dataset is critical to the supervised fine-tuning method adopted in the 
following section, a three-phase based high quality dataset generation 
method was employed (Dong et al., 2023). Compared with the two- 
phase based method SELF-QA (Zhang and Yang, 2023), this method 
can generate more instructions with greater conciseness and responses 
with more comprehensive details, making it easier and more accurate 
for farmers to follow. The workflow is illustrated in Fig. 4.

We first collected the specialized pdf textbooks on disease manage
ment for 13 crops (see Supplementary Materials STable1). Thereafter, 
optical character recognition (OCR) technology was utilized to extract 
the textual content into an editable format. Subsequently, the extracted 
text was manually segmented—by chapters, paragraphs, or disease 
categories—to produce multiple context-specific text files with complete 
semantic logic, with each segment saved as an individual .txt file. Each 
txt file served as contextual data fed to the Llama3.1-405b-instruct 
model, an instruction-tuned generative language model developed by 
Meta (Dubey et al., 2024).

With the context data prepared, the generation of fine-tuning data
sets proceeded in three phases (Fig. 4). Firstly, Llama3.1-405b-instruct 

Table 2 
Summary of the features of the ten deep learning vision models used for crop 
disease identification.

Model Parameter 
Size

Description Training 
Time

GPU 
Memory

ResNet-34 21.3 M Deep residual 
network with 34 
layers for efficient 
training

~4.5 h ~3.7G

ResNet-50 23.6 M A residual learning- 
based CNN known 
for handling deeper 
networks effectively.

~4.1 h ~4.1G

MobileNetV3- 
Small

1.58 M A lightweight neural 
network designed for 
mobile and edge 
devices.

~4.1 h ~3.3G

EfficientNet-B2 7.79 M A scalable CNN that 
balances accuracy 
and efficiency.

~4.5 h ~4.3G

EfficientNet-B1 6.6 M Smaller version of 
EfficientNet-B2 with 
improved accuracy.

~6.12 h ~4.3G

EfficientNet-B0 4.1 M The baseline 
EfficientNet model, 
optimized for speed 
and parameter 
efficiency.

~4.6 h ~4.0G

EfficientNetV2- 
S

20 M The upgrade of 
EfficientNetV1 aims 
to improve the 
accuracy of the 
model while also 
increasing the 
number of 
parameters.

~4.5 h ~3.5G

Swin- 
transformer- 
Tiny

27.6 M A resource-efficient 
model for mobile 
vision tasks, with 
hierarchical and 
windowed attention 
mechanisms.

~5.5 h ~4.6G

FasterNet-T0 2.7 M A streamlined CNN 
that prioritizes speed 
without 
compromising on 
accuracy.

~4.2 h ~3.3G

FasterNet-T1 6.4 M A sophisticated CNN 
that maintains a 
balance between 
accuracy and 
efficiency.

~4.1 h ~3.3G

Fig. 3. The workflow for crop disease data preparation, model training, validation, testing, and selection.

Table 3 
Overview of the hyperparameters used in disease identification models 
architecture.

Model architecture Learning Rate (Lr) Epochs Optimizer

ResNet 0.01 50 SGD
EfficientNet 0.0001 50 Adam
EfficientNetV2 0.01 50 SGD
MobileNetv3 0.0001 50 Adam
Swin-Transformer 0.0001 50 AdamW
FasterNet 0.0001 50 Adam
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model generated instructions by incorporating contextual information 
from the partitioned text according to Prompt1 (as shown in STable2). 
Secondly, these instructions were executed to produce an initial output 
according to Prompt2 (as shown in STable 3). Finally, the Llama3.1- 
405b-instruct model refined the initial output by integrating it with 
the contextual data according to Prompt3 (as shown in STable 4), 
thereby ensuring logical coherence and key insights extraction. To 
further clarify this process, an illustrative example of the instruction- 
following data generation process for professional disease prevention 

and control information on rice sheath blight is provided in STable 5.
After generation, all instruction-following data were subjected to 

manual inspection, data cleaning, and integration to construct a 
comprehensive and high-quality instruction-following dataset for dis
ease management across the 13 crops. The number of generated 
instruction-following data instances for each crop is shown in Fig. 5. The 
instance counts for each crop category were calibrated to achieve an 
even distribution, yielding a total of 2,500 instances across categories, 
with each comprising between 6.7 % and 9.6 % of the total. This dataset 

Table 4 
Key statistics of all the six datasets used for training, validation, and benchmarking in the CDIP-ChatGLM3 development.

Dataset Crops Diseases Samples Data 
Type

Task Source Purpose

Image Dataset 13 48 100,989 Image Classification The crop datasets listed in Table 1 Disease identification models 
training, validation, and testing.

13-Crop Instruction- 
Following Dataset

13 48+ 2500 Text Fine-tuning Extracted from the selected high quality crop 
protection books and constructed via Llama 3.1 
APIs

LLM model fine-tuning to enhance 
its expertise for application in 
agricultural domain.

Alpaca General 
Dataset

N/A N/A 520,000 Text Fine-tuning Standard Alpaca Dataset 
https://huggingface.co/datasets/tatsu-lab/alpaca

Alleviating the catastrophic 
forgetting issue during the fine- 
tuning process for retaining general 
capabilities.

CMMLU Test 
Dataset

N/A N/A 11,528 Text Benchmarking Standard CMMLU dataset 
https://github.com/haonan-li/CMMLU

Testing the general language 
abilities of LLMs.

Specialized Abilities 
Dataset

13 30 1000 Text Benchmarking 200 disease prevention and control instructions 
were selected from the 13-Crop Instruction- 
Following Dataset, and the remaining 800 variants 
were generated via the Llama 3.1 API according to 
the selected 200 instructions.

Evaluating LLMs’ expertise in 
agricultural disease control.

Image 
Understanding 
Test Dataset

13 48 610 Image Classification 10 images were randomly selected for each crop 
disease and its healthy counterpart from the Image 
Dataset.

Evaluating LLMs’ abilities to 
interpret and classify disease 
images.

Fig. 4. Workflow for generating a 13-Crop instruction-following dataset from the collected specialized crop pdf books.
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was used for fine-tuning the large language model, with 10 % randomly 
sampled as a validation set during training to ensure a consistent dis
tribution of crop categories.

Due to its extensive diversity and comprehensive domain coverage 
(Table 4), the publicly available Alpaca dataset, comprising a wealth of 
diverse, high-quality, and open-ended general questions covering 
various fields such as mathematics and coding, was selected to mitigate 
catastrophic forgetting. Catastrophic forgetting is quite common in 
domain-specific large language models (Kirkpatrick et al., 2017), espe
cially when they learn specialized knowledge and terminology. 
Acquiring specialized knowledge often results in the loss of general 
knowledge, thereby weakening their language abilities. A portion of 
general data mixed with specialized data can help the model “recall” the 
lost general knowledge, alleviating the issue of catastrophic forgetting 
during the training on specialized knowledge (Hayes et al., 2020). 
Alpaca served as the general dataset to be combined with our high- 
quality instruction-following specialized dataset on 13 different crops 
for fine-tuning training (Dong et al., 2023; Taori et al., 2023). By setting 
a mixing ratio between the specialized dataset and Alpaca, catastrophic 
forgetting issue is anticipated to be substantially mitigated.

Chinese Massive Multitask Language Understanding (CMMLU) 
benchmark dataset (Li et al., 2023) was used to test the model’s 
reasoning abilities after fine-tuning. CMMLU is a comprehensive 
benchmark designed to evaluate large language models’ knowledge and 
reasoning abilities within the context of Chinese language and culture. It 
spans 67 subjects, including topics in science, technology, engineering, 
and mathematics (STEM) fields, social sciences, and humanities, with a 
particular focus on tasks that are specific to China, such as traditional 
Chinese medicine and Chinese driving rules. The dataset consists of 
single-choice questions, with both a few-shot development set and a 
more extensive test set for each subject. The questions and their answer 
choices are designed to test models’ understanding of complex and 
domain-specific knowledge, making it an important tool for assessing 
Chinese-language models like ChatGLM in diverse areas.

To test the fine-tuned model’s specialized abilities, 200 frequently 
encountered or representative crop disease prevention and control 
questions, along with their original responses serving as the standard 
answers, were selected from the fine-tuning specialized dataset to create 
the specialized abilities test dataset. Based on these selected questions, 
four variants of each question, expressing the same meaning as the 
original, were obtained using Llama3.1-405b-instruct (S. Chen et al., 

2023) (the variants obtaining process is provided in Supplementary 
Material STable 6). The original question and the standard answer as 
well as the four variants comprised a group. The created expertise test 
dataset comprised 200 groups in total. When testing the model’s 
specialized abilities, these groups of questions were input into the fine- 
tuned models, the original models, and three state-of-the-art models 
including GPT-4o (Achiam et al., 2023), Llama3.1-405b-instruct and 
Qwen-max (Bai et al., 2023) and the responses were generated for 
evaluation of their expertise abilities.

To compare the classification performance of our model and the 
SOTA multimodal language models on disease images, we randomly 
selected 10 images from each disease category to construct the Image 
Understanding Test Dataset.

2.2.2. ChatGLM3-6B as the base large language model
ChatGLM3-6B is an advanced version of the ChatGLM series designed 

specifically for Chinese language tasks, making it an ideal baseline 
model for fine-tuning in specialized domains, such as crop disease 
management, where less educated Chinese farmers are involved (GLM 
et al., 2024). Additionally, ChatGLM3-6B achieves an optimal balance 
between overall performance and computational efficiency. With 6 
billion parameters, it provides robust general-purpose language under
standing while remaining more accessible for fine-tuning on available 
GPUs, especially compared to larger models with tens of billions of pa
rameters. This moderate size allows for efficient model training and fine- 
tuning within standard hardware constraints, making it a feasible choice 
for organizations or researchers with limited access to extensive 
computational resources. Moreover, ChatGLM3-6B maintains robust 
performance across a variety of tasks, ensuring it can handle both gen
eral language processing and domain-specific fine-tuning, such as crop 
disease management (GLM et al., 2024). Its ability to integrate 
specialized knowledge while preserving general language capabilities, 
as well as the widespread availability compared to the popular LLMs as 
ChatGPT, makes it a versatile and practical choice for fine-tuning.

2.2.3. Fine-tuning ChatGLM3-6B for crop disease management
Despite the high proficiency of ChatGLM3-6B in natural language 

processing tasks, fine-tuning is necessary to meet the specific needs of 
farmers in addressing crop diseases effectively (Gupta et al., 2024). By 
tailoring its output to agricultural requirements in crop protection, fine- 
tuning enhances the model’s responsiveness in disease prevention and 
control area. Commonly used fine-tuning methods should be carefully 
assessed and selected to maximize capability enhancement in these 
areas. To achieve this, the model fine-tuning procedures were conducted 
using the LLaMA-Factory operational platform (Zheng et al., 2024). Two 
widely used fine-tuning methods, Low-Rank Adaptation (LoRA) and 
Freeze-tuning method (Freeze) (Houlsby et al., 2019; Hu et al., 2021; 
Zheng et al., 2024), were compared. Following this, comprehensive fine- 
tuning of ChatGLM3-6B was performed to enhance its expertise while 
retaining its general language abilities.

LoRA is a fine-tuning method designed to adapt pre-trained language 
models efficiently with a minimal number of trainable parameters. It 
works by introducing low-rank adapters into the layers of the pre- 
trained model, training only the dimensionality reduction matrix and 
the dimensionality enhancement matrix, while keeping the core model 
parameters fixed (Hu et al., 2021). This allows for a more focused and 
computationally efficient training process. The process involves three 
key steps: loading the pre-trained model, inserting LoRA adapters, and 
training the adapters.

On the other hand, the Freeze tuning method selectively freezes 
specific layers or most parameters in the pre-trained model, allowing 
only a small subset of decoder layer parameters to be updated during 
fine-tuning (Houlsby et al., 2019; Levine et al., 2022). This method helps 
retain the learned features from the pre-training phase, thus preserving 
the core knowledge while adapting the model to task-specific needs. The 
fine-tuning process for the Freeze-tuning method involves four steps: 

Fig. 5. Distribution of the 13-Crop instruction-following dataset across 
different crops. Each section represents the proportion of dataset allocated to a 
specific crop.
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loading the pre-trained model, freezing the desired layers, modifying the 
model as necessary, and training the model.

Different fine-tuning methods may yield varying performance levels 
across different tasks (Dettmers et al., 2024; Jeong, 2024). In this study, 
we evaluated both fine-tuning methods on ChatGLM3-6B under the 
parameters outlined in Table 5, which includes details such as batch 
size, learning rate, and epoch variations. These fine-tuning methods 
were tested across multiple epochs (3, 5, 10, 15, 20 and 30), with key 
distinctions in trainable layers for the Freeze method and specific values 
like LoRA alpha (16) and rank (8) for LoRA, as well as the choice of 
AdamW as the optimizer and a cosine learning rate scheduler. Addi
tionally, the running performance for fine-tuning ChatGML3 on a single 
NVIDIA 4090 GPU is also provided in the last two rows of Table 5. The 
comparison of the fine-tuning methods helps identify the most effective 
method for improving the model’s disease prevention and control ca
pabilities while adhering to computational constraints.

As aforementioned, fine-tuning could cause catastrophic forgetting 
and weaken the general language abilities. To fine-tune the model for 
enhanced expertise while preserving general language abilities, two 
training strategies, including multi-task learning(MTL) and Dual-stage 
Mixed Fine-Tuning (DMT) (Dong et al., 2023), were introduced to 
determine the optimal effectiveness of various combination of profes
sional and general dataset, and their performance was systematically 
compared. MTL directly mixes the expertise and general data for the 
fine-tuning. In contrast, DMT first executes fine-tuning on specialized 
dataset, and then utilizes varying proportions of specialized and general 
data for further fine-tuning to enhanced model performance. A work
flow was designed to illustrate the entire fine-tuning process (Fig. 6).

The workflow begins with the generated specialized crop disease 
control dataset, referred to as the 13-Crop instruction-following dataset, 
followed by fine-tuning using Freeze and LoRA methods. After fine- 
tuning, an evaluation is conducted to select the optimal fine-tuning 
method and the best-performing model. Based on the selected method 
and model, further fine-tuning with MTL and DMT is performed, and the 
fine-tuning results are compared to identify the model that achieves the 
highest expertise performance while retaining the general language 
abilities.

2.2.4. Metrics for evaluating fine-tuned LLM
Four commonly used metrics, including Bilingual Evaluation Un

derstudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE), CMMLU accuracy, and output error rate, were employed to 
evaluate the effectiveness of the two fine-tuning methods and the two 
training strategies.

BLEU is utilized to assess the quality of machine translation outputs 
(Papineni et al., 2002). It primarily measures the similarity between the 
machine translation output and the reference translation, with a 
particular emphasis on sentence accuracy and precise matching. BLEU 
evaluates the precision of machine translations by calculating the degree 
of match for n-grams (sequences of N consecutive words). The under
lying principle of BLEU is that the closer the machine translation output 
is to professional human translation, the better the quality. A higher 
score of BLEU indicates superior machine translation performance. The 
ROUGE metric, commonly used for evaluating text summarization, 
compares the overlap between automatically generated text and refer
ence summaries (Lin, 2004). We use three of its variations, including 
ROUGE-N, ROUGE-L and Average ROUGE F-score (Zhang et al., 2019). 
This metric is frequently reported to assess the performance of automatic 
summarization systems, machine translation, or any task involving the 
generation of natural language text. A higher Average ROUGE F-score 
indicates better alignment between the generated text and the reference 
text, suggesting that the model produces more coherent, relevant, and 
accurate output.

Both BLEU and ROUGE provide crucial insights into the quality of 
text generated by models like ChatGLM3-6B. While BLEU focuses on the 
precision and fluency of machine translations by evaluating n-gram 
matches, ROUGE evaluates the content retention and coherence of 
automatically generated text in comparison to human reference sum
maries. Together, these metrics help gauge how well the fine-tuned 
model captures both accuracy and meaning in specific domain tasks 
such as crop disease management.

To evaluate general language abilities of the models, CMMLU accu
racy was employed to measure the ratio of the correctly answered 
questions to the total number of questions, which can be calculated as 
follows: 

CMMLUaccuracy =
Qcorrect

Qtotal
× 100% (5) 

where Qcorrect denotes the number of correctly answered questions and 
Qtotal denotes the number of all the questions.

Additionally, during the fine-tuning process for generating answers, 
we observed that the model produces repetitively loops in varying 
probabilities across different epochs, resulting in excessively long re
sponses. These repetitive loops could greatly destroy the robustness of 
the model. To assess this possibility, we introduced the output error rate 
(referred to as error rate) to quantify the likelihood of such errors 
occurring, which can be calculated as follows: 

Error Rate =
Rtoken>5000

Rtotal
× 100% (6) 

where Rtoken denotes the number of responses with more than 5000 to
kens and Rtotal denotes the total number of generated responses.

Moreover, to evaluate the computational resource requirements of 
LLM models, the following formula was employ to estimate their 
memory usage (Anthony et al., 2023): 

M ≈
P × Q × 109

8 × (1024)3 × 1.2 (7) 

where M denotes the approximate GPU memory requirement, providing 
a simplified estimate of the Video Random Access Memory (VRAM) 
necessary to execute the model. P is the number of parameters in the 
model. Q specifies the numerical precision of each parameter, measured 

Table 5 
Overview of parameters set in fine-tuning ChatGLM3-6B using two different 
methods, Freeze-tuning and LoRA. The table outlines key configurations for both 
methods, including batch size, epochs, model-specific parameters (trainable 
layers for Freeze-tuning and alpha/rank for LoRA), learning rate, optimization 
techniques, and running performance.

Fine-tuning Parameter Freeze LoRA

Training Setup Train batch size 2 2
Gradient 
accumulation 
steps

8 8

Stage Supervised Fine- 
Tuning

Supervised Fine- 
Tuning

Epochs Epoch 3, 5, 10, 15, 20, 30 3, 5, 10, 15, 20, 30
Validation Validation size 0.1 0.1

Validation batch 
size

1 1

Model-Specific Freeze trainable 
layers

2 −

LoRA alpha − 16
LoRA rank − 8

Optimization Learning rate 5.0E-05 1.0E-04
Learning rate 
scheduler type

Cosine Cosine

Optimizer AdamW AdamW
Running 

performance
GPU Memory ~22 GB ~17 GB
Training Time 0.4 h (3 epochs) – 

4 h (30 epochs)
0.3 h (3 epochs) – 
2.7 h (30 epochs)
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in bits.

2.3. CDIP-ChatGLM3: Integration of identification models and fine-tuned 
LLM

By integrating the selected best crop disease identification model 
(CDIP) with the fine-tuned high-performance ChatGLM3-6B, we created 
CDIP-ChatGLM3, a practical tool for crop disease management. The 
integration was accomplished according to the following workflow. 
First, disease images are captured and uploaded, followed by analysis 
using the crop disease identification model. Once the identification 
result is generated, it is converted into a Chinese keyword, which is then 
embedded into a query or consultation, forming a disease-specific 
consultation. This consultation is then submitted to the fine-tuned 
ChatGLM3-6B. To obtain an accurate response, the LLM is instructed 
as follows: 

“You are now a crop disease prevention assistant. Please answer ques
tions in Chinese, describe the specific details of each question thoroughly, 
and display the content in a structured format.”

Once the instruction is executed, the LLM outputs a response, 
embedding the disease-related keyword into a predefined template: 

“The state of the leaf is {keyword}. If you have any questions, please feel 
free to ask.”

Then farmers can obtain responses regarding the identification re
sults or interact directly with the systems to access the relevant 
knowledge or any information they seek.

This integration enables seamless combination between the disease 
identification model and the LLM. With the selected deep learning vision 
model for disease identification and the fine-tuned ChatGLM3-6B for 
prescription, we developed and deployed our CDIP-ChatGLM3 based 
application. When a disease image is uploaded, CDIP-ChatGLM3 pro
vides reliable and accurate responses for prevention and control in a 
timely, interactive manner. With CDIP-ChatGLM3, the efficiency of 
disease prevention and control could be significantly improved.

2.4. Experiments design

2.4.1. Experiments on the models’ expertise and general language abilities 
changes during fine-tuning

To select the best fine-tuning method and assess both disease-specific 
expertise and general language abilities of the fine-tuned model, we 
conducted fine-tuning experiments on both domain-specific and the 
combination of domain-specific and general dataset, using both LoRA 
and Freeze. Fine-tuning was conducted across 30 epochs. The fine- 
tuning method with the highest performance was chosen for further 
fine-tuning with MTL and DMT training strategies on a combined 
specialized and general dataset, with the goal of maintaining high 

expertise capabilities while retaining general language proficiency and 
low error rate. The Chinese Massive Multitask Language Understanding 
(CMMLU) benchmark (Li et al., 2023) was employed to evaluate the 
fine-tuned models’ general language abilities in Chinese cultural context 
with the Zero-shot and Five-shot learning, respectively. Here, Zero-shot 
learning directly inputs the prompt to the LLM, and Five-shot learning 
presents a set of high-quality demonstrations on the target task, each 
consisting of both input and desired output. For Five-shot learning, the 
model is first exposed to high-quality examples, enabling it to better 
understand human intentions and the criteria for determining desirable 
answers.

2.4.2. Evaluation of the fine-tuned model’s performance on the original 
domain-specific materials and its variants

To further test if the fine-tuned model can learn, understand, and 
apply the knowledge from the fine-tuning specialized dataset, we con
ducted assessments on the expertise abilities test dataset. Using the 
original ChatGLM3-6B, the fine-tuned ChatGLM3-6B, and three state-of- 
the-art LLM models, including GPT-4o, Llama-3.1-405B, and Qwen-max, 
we generated responses to each group of five questions in the dataset. 
Subsequently, we compared the responses generated to the standard 
answers (i.e., the answers from the original training materials). BLEU-4 
and average ROUGE F-scores were used to assess the professional 
capability of the five large language models in answering disease-related 
questions.

2.4.3. Comparative evaluation of CDIP-ChatGLM3 and multimodal models
To evaluate the performance of our proposed dual-model CDIP- 

ChatGLM3 and multimodal models in disease image classification and 
understanding, we designed and conducted a comparative experiment. 
Several state-of-the-art universal multimodal language models, 
including LLaVA-v1.6-7B (Li et al., 2024), MiniCPM-V-2.6 (Yao et al., 
2024), Llama-3.2-11B-Vision-Instruct (Dubey et al., 2024), GLM-4v- 
Plus-20250111 (GLM et al., 2024), Qwen2.5-VL-72B-Instruct (A. Yang 
et al., 2024), DeepSeek-VL2 (Wu et al., 2024), and InternVL2.5-78B 
(Chen et al., 2024) are selected for comparison. We utilized either the 
APIs provided by these models or their publicly available pretrained 
versions without conducting any fine-tuning or training. Specifically, 
LLaVA-v1.6-7B, MiniCPM-V-2.6, and Llama-3.2-11B-Vision-Instruct 
were run locally via the Ollama inference framework in INT4 or 
Q4_K_M formats, whereas Qwen2.5-VL-72B-Instruct, DeepSeek-VL2, 
and InternVL2.5-78B were accessed through external APIs in BF16 
quantization. GLM-4v-Plus-20250111 is closed-source, providing no 
corresponding model information. Meanwhile, CDIP-ChatGLM3 used 
FP16 (16-bit) quantization. The memory calculation formula (Eq. (7)) 
was employed to estimate the GPU memory requirements of these 
models. The constructed image understanding test dataset was fed into 
these models. To ensure a fair comparison, particularly with the 
specialized dual-model CDIP-ChatGLM3, we standardized the prompt 

Fig. 6. The workflow for fine-tuning ChatGLM3-6B. MTL represents multi-task learning and DMT for Dual-stage mixed fine-tuning.
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for all multimodal language models as follows: 

“What disease is in the picture? Please select ONE and ONLY ONE option 
from the following list and output EXACTLY that option without any extra 
words: [48 crop disease categories + 13 healthy crop categories].”

Finally, Accuracy (Acc) and F1-score were employed as evaluation 
metrics to comprehensively quantify the models’ capability in disease 
image classification and understanding.

Moreover, the same method outlined in Section 2.4.2 was applied to 
assess expertise abilities and evaluate the professional competence of 
our method and the multimodal models in the agricultural domain, 
using the Specialized Abilities Test Dataset.

2.4.4. Computing environment
The experiments were conducted on a system equipped with an Intel 

(R) Core(TM) i9-14900 K CPU, 128 GB of RAM, and an NVIDIA(R) RTX 
4090 graphics card with 24 GB of video memory. The software envi
ronment comprised Windows 11, CUDA version 12.6, Python version 
3.10.14, and PyTorch version 2.4.0. This configuration enabled effective 
fine-tuning and evaluation of the models, ensuring their ability to 
deliver real-time, accurate disease management recommendations for 
farmers.

3. Results

3.1. Performance of disease identification models

The experimental results of the 10 classification models for classi
fying the diseases are shown in Fig. 7. The models with EfficientNet 
achitecture achieved both the highest and lowest performance in terms 
of all the metrics, among which EfficientNetB2 ranked the first, and 
EfficientNetV2-S ranked the last. ResNet, MobileNet, and Swin- 
transformer achieved approximately and moderately high perfor
mance. FasterNets performed only lower than the three highest Effi
cientNets. For most of the architecture, the models and their variants of 
different sizes showed only slight differences in performance. Only the 

EfficientNetV2-S of the EfficientNets had a significant inferior perfor
mance compared to other EfficientNets, while two FasterNets had a mild 
performance difference. Among the 10 models, EfficientNet-B2 achieves 
the highest accuracy (97.97 % ± 0.16 %), recall (97.17 % ± 0.46 %), 
precision (97.18 % ± 0.59 %), and F1-score (97.12 % ± 0.10 %) at a 95 
% confidence level.

Fig. 8 shows the classification accuracy of the best-performing Effi
cientNet-B2 model across all diseases, with cherry, citrus, corn, grape, 
peach, strawberry, and tomato crops exhibiting high classification ac
curacy. For these crops, most disease categories exhibited accuracies 
exceed 95 %, with a significant portion achieving 100 % accuracy. In 
contrast, the classification accuracy for diseases in apple, pepper, potato, 
rice, and wheat crops was comparatively lower, with substantial varia
tion in accuracy across disease categories within these crops. Notably, 
cherry and strawberry crops had the highest average classification ac
curacy, reaching 100 %, while rice had the lowest average accuracy, 
with rice hispa disease classification accuracy at only 70.18 %. Further 
details on the disease identification model can be found in the Supple
mentary Material. Specifically, SFig. 5 highlights the top 40 misclassi
fication pairs, while SFig. 6 presents the model’s classification 
performance at different levels.

3.2. The performance of CDIP-ChatGLM3 in disease management 
prescription

Fig. 9 presents the fine-tuning results of ChatGLM3-6B on specialized 
dataset using LoRA and Freeze methods (Fig. 9a and Fig. 9b), and the 
test results of the fine-tuned models’ general capability measured on the 
benchmark CMMLU (Fig. 9c and Fig. 9d). It was observed that both 
BLEU-4 and ROUGE scores increased with the fine-tuning epochs for 
both fine-tuning methods, achieving improved performance over the 
original ChatGLM3-6B. Notably, the Freeze method significantly out
performed LoRA, achieving a BLEU-4 index of nearly 350 at the 10th 
epoch. Meanwhile, the general language abilities exhibited fluctuations 
during the fine-tuning process and achieved lower performance metrics 
compared to the original ChatGLM3-6B. Additionally, the LoRA fine- 

Fig. 7. Disease classification performance of 10 models in terms of accuracy, precision, recall and F1-score, based on the average results from three experimental 
runs. The highest values achieved are indicated with stars.
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Fig. 8. Classification accuracy across all diseases using best EfficientNet-B2, with different colors representing various crops.
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tuning method exhibited a higher error rate, characterized by an initial 
sharp increase followed by a rapid decline. In contrast, the Freeze 
method maintained a lower error rate, with fluctuations observed across 
different epochs. At the 10th epoch, a relatively high expertise ability 
metric as well as a low error rate was achieved. Despite a slight decline 
in general language abilities compared to the original ChatGLM3-6B, it 
remained the best model when considering all factors. In contrast, 
although the better expertise ability could be achieved at the 20th 
epoch, the general language ability and the error rate decreased obvi
ously, leading to poor robustness and accuracy. These results indicate 
the superior effectiveness of the Freeze method for fine-tuning on the 
specialized dataset, leading to the adoption of fine-tuned model at epoch 
10 using Freeze (Freeze10) in subsequent experiments.

Based on the selected fine-tuned model by Freeze at the 10th epoch 

(Freeze10) and Freeze method, the results of further fine-tuning using 
MTL and DMT training strategies on the dataset combining specialized 
and general language abilities are presented in Fig. 10. When MTL was 
used (Fig. 10a), the expertise ability first improved gradually with the 
increase of general data, reaching the highest BLEU-4 and ROUGE when 
the general data was four times size of special data. Meanwhile, the error 
rate first changed smoothly before sharply increasing, reaching the 
highest value at the same point as the expertise ability peaked. In 
contrast, when DMT was used (Fig. 10b), the expertise ability increased 
rapidly with the addition of specialized dataset until the maximum 
amount of specialized dataset were reached, followed by a slower incline 
before the general data was increased to twice the amount of the 
specialized dataset. Meanwhile, the error rate fluctuated, achieving its 
lowest value upon the inclusion of the maximum specialized dataset 

Fig. 9. Performance changes of two fine-tuning methods across epochs. (a) Changes in specialized abilities during LoRA based fine-tuning measured by BLEU-4 
Index, Average ROUGE F-score, and error rate. (b) Specialized abilities changes during Freeze based fine-tuning measured by BLEU-4 Index, Average ROUGE F- 
score, and error rate. (c) General language abilities changes during LoRA based fine-tuning measured by CMMLU accuracy changes. (d) General language abilities 
changes during Freezing based fine-tuning measured by CMMLU accuracy changes. Thick short vertical line segments represent the range of accuracy change for 
three tests. Zero-shot Learning directly inputs the prompt to the LLM. Few-shot Learning presents a set of high-quality demonstrations, each consisting of both input 
and desired output, on the target task.
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(Fig. 10b). On the other hand, the general language abilities of the 
models reached near-peak levels at the same position where the exper
tise ability peaked, closely approaching the performance of original 
ChatGLM3-6B (Fig. 10d). Taking all these factors into consideration, 
DMT method achieved the best performance when the maximum 
amount of specialized dataset was included, combined with an equal 
amount of general data.

As for the general language abilities, there was a difference between 
Zero-shot and Five-shot method. When a 0-shot approach was used, high 
accuracy was obtained, showing fluctuations as the proportion of gen
eral data increased (Fig. 10c and Fig. 10d), or epochs increased (Fig. 9c 

and Fig. 9d). In contrast, with a Five-shot approach, most models 
demonstrated lower accuracy compared to the Zero-shot method, 
exhibiting similar trends in performance as Zero-shot. No obvious 
change on both Zero-shot and Five-shot were found.

Based on the experimental results above, we ultimately selected the 
Freeze10(S:2.5 K)-DMT(S:2.5 K + G2.5 K) model as the fine-tuned 
model for developing CDIP-ChatGLM3.

The test results for the expertise abilities of our fine-tuned models 
and other comparative models are shown in Fig. 11. Our fine-tuned 
model significantly outperformed all other models in terms of both 
BLEU-4 Index and Average ROUGE F-score when applied to the domain 

Fig. 10. The performance changes of Freeze method with different training strategies and dataset ratios. (a) Specialized abilities changes during MTL strategy based 
fine-tuning measured by BLEU-4 Index, Average ROUGE F-score, and error rate. (b) Specialized abilities changes during DMT strategy based fine-tuning measured by 
BLEU-4 Index, Average ROUGE F-score, and error rate. (c) General language abilities changes during MTL strategy based fine-tuning measured by CMMLU accuracy. 
(d) General language abilities changes during DMT strategy based fine-tuning measured by CMMLU accuracy. MTL represents multi-tasking learning training 
strategy, and DMT represents dual-stage mixed training strategy. Thick short vertical line segments represent the range of accuracy change for three tests. Freeze10 
(S:2.5 K) represents the model fine-tuned for 10 epochs using Freeze on the specialized dataset (the size is 2.5 K). Freeze10-MTL(S:2.5 K + G1.25 K) represents the 
model fine-tuned with MTL strategy on the combination of specialized dataset of 2.5 K and general dataset of 1.25 K using Freeze for 10 epochs. Freeze10(S:2.5 K)- 
DMT(S:2.5 K + G1.25 K) represents the model that first was fine-tuned for 10 epochs using Freeze on the specialized dataset (the size is 2.5 K), followed by applying 
the DMT strategy for 10 epochs of Freeze-based fine-tuning on a combination of 2.5 K specialized dataset and 1.25 K general dataset.
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of disease control and prevention. The original ChatGLM3-6B exhibited 
the lowest BLEU-4 Index value among the models evaluated. Llama-3.1- 
405B-Instruct ranked second, but significantly lower than our fine-tuned 
ChatGLM3-6B (CDIP-ChatGLM3). In contrast, GPT-4o achieved a BLEU- 
4 Index comparable to that of the ChatGLM3-6B, which was the lowest. 
Additionally, the Qwen-max achieved a BLEU-4 Index only slightly 
better than the lowest one. However, the ranking of these models varied 
when sorted by Average ROUGE F-score or BLEU-4, with the exception 
that our CDIP-ChatGLM3 consistently ranked first for both metrics. 
Specifically, GPT-4o and Qwen-max achieved similar Average ROUGE F- 
score, both of which was noticeably lower than the highest score. 
ChatGLM3-6B achieved an Average ROUGE F-score slightly lower than 
that of Qwen-max. While ranking second in terms of BLEU-4 Index, 
Llama-3.1-405B-Instruct achieved the lowest Average ROUGE F-score.

The experimental results comparing the image classification abilities 
as well as expertise abilities of our model with the popular universal 
multimodal models are presented in Table 6. Among all the multimodal 
models, Qwen2.5-VL-72B-Instruct, InternVL2.5-78B, and GLM-4v-Plus- 
20250111 achieved the top three scores on both image identification 

and expertise abilities, while exhibiting significantly higher memory 
consumption compared to other models. In contrast, LLaVA-v1.6-7B and 
MiniCPM-V-2.6 exhibited moderate domain-specific expertise while 
demonstrating the lowest performance in image identification and 
minimal memory requirements. Compared to these two models, 
DeepSeek-VL2 showed modest performance in image identification and 
ranked near the bottom in expertise. Although Llama-3.2-11B-Vision- 
Instruct required less memory than most multimodal models, its 
domain-specific expertise was among the lowest observed. These results 
indicate that, the pretrained versions or API access of universal multi
modal models, could only achieved limited performance on our dataset 
(disease images and disease instruction Q&A), particularly in image 
classification and specialized expertise tasks (Table 6). In contrast, our 
dual-model CDIP-ChatGLM3, which underwent vision training and fine- 
tuning, achieved significantly better performance in both aspects. 
Notably, our model has the smallest size and reduced inference memory 
consumption compared to most multimodal models, enabling it’s 
training and deployment with comparatively limited resources.

Additionally, a comprehensive performance summary of all tested 

Fig. 11. Test results for the expertise capabilities of the original ChatGLM3-6B, Qwen-Max, Llama-3.1-405B-Instruct, GPT-4, and our fine-tuned model, CDIP- 
ChatGLM3 with metrics of BLEU-4 and Average ROUGE F-score. Bold diagonal lines indicate broken axes.

Table 6 
Disease identification and expertise abilities comparison of multimodal models and the dual-model CDIP-ChatGLM3.

Model Type Params Language 
Model

Vision 
Model

Loading 
Precision (Q)

Inference 
Memory 
(G)

Image 
Understanding 
Test Metric

Specialized Abilities Test Metric

Acc F1- 
score

BLEU-4 
Index (‰)

Average ROUGE 
F-score (‰)

LLaVA-v1.6-7B Multi- 
modal

7B Llama-7B CLIP-300 M INT4 
(4-bit)

~5 0.04 0.04 0.87 292.40

MiniCPM-V-2.6 8B Qwen2-7B CLIP-500 M INT4 
(4-bit)

~6 0.04 0.04 2.03 228.38

Llama-3.2-11B- 
Vision-Instruct

11B Mllama-9.8B Mllama-895 
M

Q4_K_M 
(~4.5bit)

~8 0.04 0.04 0.68 72.06

GLM-4v-Plus- 
20250111

N/A N/A N/A N/A N/A 0.12 0.13 0.90 309.86

Qwen2.5-VL-72B- 
Instruct

73.4B Qwen2.5-72B Qwen-ViT BF16 
(16-bit)

~164 0.21 0.21 1.45 304.36

DeepSeek-VL2 27.5B DeepSeekMoE- 
27B

SigLIP-400 M BF16 
(16-bit)

~62 0.11 0.12 0.11 108.91

InternVL2.5-78B 78B Qwen-2.5-72B InternViT- 
6B-v2.5

BF16 
(16-bit)

~173 0.19 0.2 0.45 304.38

CDIP-ChatGLM3 Dual- 
model

6B FT-ChatGLM3- 
6B

EfficientNet- 
b2

FP16 
(16-bit)

~13 0.98 0.98 106.86 463.13
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vision and language models is also presented in Table 7 to facilitate the 
readers.

To further evaluate the performance of CDIP-ChatGLM3 for practical 
application, a sample prescription on grapevine downy mildew disease 
management, generated by both the original ChatGLM3-6B and the fine- 
tuned model CDIP-ChatGLM3, respectively, is presented in Table 8. In 
Q1 question and its responses, the underlined text demonstrates that the 
CDIP-ChatGLM3 provided more specific and actionable responses to the 
terms ’what is the typical time frame’, and ’chemical control’ compared to 
the original ChatGLM3-6B. The detailed information on grapevine 
growth stages, as well as specific chemical agent names and usage 
methods, comprised practical guidance for farmers to follow for efficient 
disease control. In the follow-up question Q2, the fine-tuned model 
offered more comprehensive, logically structured, and actionable rec
ommendations for integrated disease management than the original 
model. In contrast, the responses from the original ChatGLM3-6B were 
overly general, limiting their practical application for farmers.

Furthermore, responses from the three comparative large-scale 
LLMs—GPT-4o, Qwen-max, and Llama-3.1-405B-Instruct, are pre
sented in Supplementary Materials STable 7. Compared to these models, 
CDIP-ChatGLM3 delivered more pragmatic and readily implementable 
recommendations, exhibiting superior precision in domain-specific de
cision-making contexts. However, for the qualitative inquiries, the other 
large language models generated more comprehensive and extended 
responses than CDIP-ChatGLM3. For more examples, the readers could 
refer to Supplementary STable 9 and STable 10 for rice blast and wheat 
leaf blight prescriptions.

4. Discussion

Crop disease management challenges require effective identification 
and prescription solutions to increase the adoption of advanced tech
nologies among farmers. Current DL models achieve high accuracy in 
identifying plant diseases but fail to provide actionable guidance, 
limiting their practical impact. This study addresses these challenges by 
developing CDIP-ChatGLM3, a dual-model framework that integrates 
the precision of EfficientNet_b2 for disease identification with the 
contextual expertise of a fine-tuned ChatGLM3-6B. By combining ac
curate detection with tailored prescriptions, this approach bridges the 
gap between technical capabilities and practical usability, promoting 
the adoption of AI-driven solutions in agriculture.

4.1. The performance of disease identification models

Extensive comparative experiments involving ten widely used deep 
learning models, evaluated on a comprehensive dataset of lab and field 
images, yield two important findings. Firstly, within the same archi
tecture, model size has only a minimal impact on performance. While a 
larger model size may yield slightly improved results, the differences 
remain modest. Compared to the training data, the impact of architec
ture on the accuracy of the models could be almost ignorable in most 
cases, which aligns with Tian et al. (2024). Secondly, most of the Effi
cientNets outperform other deep learning architectures, with 
EfficientNet-B2 achieving the highest performance with an accuracy of 
97.97 % ± 0.16 % at a 95 % confidence level. Similar to our work, Tian 
et al. (2024) compared ResNet, MobileNet, and Efficient-B0, finding that 
EfficientB0 achieved the highest accuracy. Despite their comparison 
only involves Efficient-B0, their findings are consistent with ours. 
Additionally, the comparison between ResNet and EfficientNet in Atila 
et al. (2021) is also consistent with our findings. Although higher ac
curacy was achieved in their research using EfficientNet-B2, it was based 
solely on the PlantVillage dataset, with no validation conducted on a 
dataset as extensive as the one used in our research. Zhang et al. (2024)
achieved the highest accuracy of 87.51 percent using ResNet50 only on 
maize of Plant Village dataset, achieving lower accuracy than our 
results.

The superiority of EfficientNets and EfficientNet-B2 could be 
attributed to the optimal compound scaling method, which combines 
the depth, width and resolution (Tan et al., 2019), which could poten
tially reduce expenses while meeting essential requirements for disease 
identification. The high accuracy and lightweight EfficientNet-B2 could 
generate accurate disease identification result, ensuring that the large 
language model can provide the fast and accurate prescription.

4.2. The impact of fine-tuning on the abilities of language models

The fine-tuning experiments reveal two key insights. First, when 
fine-tuning with specialized dataset, large language models (LLMs) show 
a significant enhancement in their expertise abilities. However, this 
improvement in specialized capabilities comes at the cost of a gradual 
decline in their general language abilities. This effect may be attributed 
to the fine-tuning process, where parameters related to domain-specific 
knowledge are adjusted, while parameters governing general knowledge 

Table 7 
Comprehensive performance summary of all tested vision and language models.

Type Model Image Dataset Test (Avg) Image Understanding Test Specialized Abilities Test
Acc P R F1 Acc P R F1 BLEU-4 Index(‰) Avg Rouge F-score(‰)

CV EfficientNet-B0 0.97 0.96 0.96 0.96 N/A N/A
EfficientNet-B0 0.97 0.96 0.95 0.95
EfficientNet-B2 0.98 0.97 0.97 0.97
EfficientNetV2-S 0.89 0.90 0.89 0.89
FasterNet-T0 0.98 0.97 0.96 0.96
FasterNet-T1 0.98 0.96 0.96 0.96
MobileNetV3-Small 0.96 0.96 0.94 0.94
ResNet-34 0.96 0.95 0.95 0.95
ResNet-50 0.97 0.95 0.95 0.95
Swin-transformer-Tiny 0.97 0.97 0.96 0.96

MLLM LLaVA-v1.6-7B N/A 0.04 0.05 0.04 0.04 0.87 292.40
MiniCPM-V-2.6 0.04 0.04 0.04 0.04 2.03 228.38
Llama-3.2-11B-Vision-Instruct 0.04 0.04 0.04 0.04 0.68 72.06
GLM-4v-Plus-20250111 0.12 0.14 0.12 0.13 0.90 309.86
Qwen2.5-VL-72B-Instruct 0.21 0.21 0.21 0.21 1.45 304.36
DeepSeek-VL2 0.11 0.14 0.11 0.12 0.11 108.91
InternVL2.5-78B 0.19 0.21 0.19 0.2 0.45 304.38

LLM ChatGLM3-6B N/A 0.55 286.06
Qwen-max 0.87 316.67
Llama-3.1-405B-Instruct 3.71 101.55
GPT-4o 0.61 327.48

Dual-model CDIP-ChatGLM3 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.98 106.86 463.13
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must also adapt to the updated domain-specific parameters. As a result, 
the general knowledge parameters can deviate from their intended 
functions, leading to a decline in the model’s overall versatility. This 
finding is consistent with Dong et al. (2023), who highlighted the 
adversarial interaction between specialized and general language abil
ities during fine-tuning, confirming that fine-tuning for specialized tasks 
can inadvertently hinder the model’s broader linguistic capabilities. 
Wang et al. (2024) and Tariq et al. (2024) also verified the effectiveness 
of fine-tuning on specialized abilities. Furthermore, while the compar
ative results of models such as Llama, ChatGPT, and ChatGLM may differ 
from ours—potentially due to differences in research focus and experi
mental setup—Wang et al. (2023) underscore the effectiveness of fine- 
tuning in agricultural technology knowledge question-answering 
applications.

Fine-tuning a LLM with a balanced combination of specialized and 
general data can enhance its domain-specific expertise while preserving 

general language capabilities. Fine-tuning solely on specialized dataset 
often degrades general abilities, necessitating strategies to restore them 
without compromising specialization. While combining specialized and 
general data for fine-tuning appears to address this, simply merging the 
datasets offers only marginal gains in specialization and weakens gen
eral abilities. A two-stage fine-tuning approach—first on specialized 
dataset, followed by fine-tuning on a mixed dataset—has proven more 
effective. This method restores general abilities while retaining 
improved specialization, as corroborated by findings from Cook et al., 
(2024) and Dong et al., (2023). Similarly, Junying Chen et al. (2023)
demonstrated the importance of proper fine-tuning order and data 
composition in developing the HuatuoGPT-II model for traditional 
Chinese medicine. Furthermore, Tinn et al. (2023) highlighted that fine- 
tuning strategies, such as freezing layers, can stabilize baseline models 
and improve outcomes in domain-specific applications, underscoring 
the need for task-specific approaches tailored to model size and 

Table 8 
Sample 1: grapevine downy mildew consultation and the corresponding prescription responses from both ChatGLM3-6B and the fine-tuned model. The original content 
is in Chinese and is provided in STable 8.

Q&A by different LLMs

Q1: What is the typical time frame for implementing chemical control measures against grapevine downy mildew?
ChatGLM3-6B: Grape downy mildew is a prevalent plant disease commonly found in warm, humid environments. The following outlines the typical periods for chemical management of grape 

downy mildew: 
Chemical control is generally advised during the following stages: 
In conclusion, chemical management of grape downy mildew should be adapted based on disease development and weather conditions, as timely treatments are essential for effective disease 
control.  

1. Preventive Measures: During grape cultivation, downy mildew can be mitigated by selecting resistant grape varieties, maintaining appropriate planting density, performing timely pruning, and 
implementing effective vineyard management practices.

2. Treatment Measures: Upon the appearance of downy mildew, chemical control can be achieved through the application of fungicides targeting the downy mildew pathogen, as well as biological 
control agents. Early intervention during initial stages of infection is essential for effective disease management.

1. Pre-Bud Break in Spring: This is a crucial period for vineyard management, allowing for soil disinfection and pruning to reduce disease risk.
2. Early Fruit Development: Downy mildew commonly occurs during this period, necessitating regular monitoring and treatment to prevent disease progression.
3. Pre-Harvest (Prior to Fruit Maturity): This period is vital for maintaining fruit quality, where protection against disease is crucial for optimal fruit quality.
CDIP-ChatGLM3:  

1. Winter Vineyard Sanitation: Apply 500-fold diluted 77 % copper sulfate–calcium mixture for preventive treatment.
2. Pre-High-Risk Period: Apply 600-fold diluted 80 % mancozeb wettable powder or 600-fold diluted 72 % metalaxyl-mancozeb wettable powder for preventive control.
3. High-Risk/Infection Period: Use 1500-fold diluted 20 % cymoxanil suspension, 2000-fold diluted 687.5 g/L fluopicolide-propamocarb suspension, 2000-fold diluted 50 % oxathiapiprolin 

wettable powder, or 2000-fold diluted 20 % cymoxanil suspension for effective control.
4. Emergency Control During Bloom and Post-Bloom Stages (when downy mildew infects flower clusters and young fruit): Apply 2000-fold diluted 687.5 g/L fluopicolide-propamocarb 

suspension or 2000-fold diluted 50 % oxathiapiprolin wettable powder for rapid intervention.
Q2: Are there alternative methods for controlling it?
ChatGLM3-6B: In addition to chemical control, there are other methods for managing grape downy mildew:  

1. Biological Control: Utilize biological control methods, including natural predators, antagonistic pathogens, and biocontrol agents. These approaches can effectively reduce the occurrence and 
spread of grape downy mildew.

2. Physical Control: Apply physical control measures, such as black nets and shade nets, to limit the incidence and transmission of the disease.
3. Cultural Control: Implement appropriate vineyard management practices, such as pruning, thinning, and maintaining optimal planting density, to decrease disease incidence and spread.
4. Integrated Control: Combine multiple control strategies in an integrated approach to effectively manage grape downy mildew.
CDIP-ChatGLM3: 

Apart from chemical control, common methods for managing grape downy mildew include: 
1. Cultural Control:  

• Select resistant grape varieties.
• Perform proper pruning and remove diseased tissue.
• Apply appropriate irrigation to avoid excessive moisture.
• Balance fertilization, avoiding over-application of nitrogen.
Biological Control:  

• Introduce natural predators, such as antagonistic fungi targeting downy mildew pathogens.
• Use biological fungicides, like Bacillus subtilis.
3.Physical Control:  

• Utilize UV lamps to kill pathogens.
• Cover the vineyard with white plastic film to inhibit pathogen growth.
4. Integrated Control:  

• Combine cultural, biological, and chemical control methods for comprehensive management.
• Select appropriate control periods based on disease development.
• Conduct timely interventions at critical stages, such as early infection and pre- and post-bloom phases.
• Practice winter vineyard sanitation by removing infected tissue to reduce pathogen sources.
When applying chemicals, choose low-toxicity, low-residue options and prioritize safe usage.
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objectives.
Additionally, the prescription experiments demonstrated CDIP- 

ChatGLM3 provided superior specific and actionable suggestions over 
other models. This further confirmed the efficacy of the fine-tuning 
process, in agreement with the quantitative metric comparisons. 
Meanwhile, it underscores the importance of targeted training and 
specialized dataset. In contrast, the comparative models offered more 
comprehensive and extended responses than CDIP-ChatGLM3, demon
strating superior general language abilities. One possible reason is that 
the relatively smaller model size of CDIP-ChatGLM3 results in dimin
ished general language abilities compared to LLMs with larger param
eter counts and a more extensive general knowledge base (Zhao et al., 
2023).

Therefore, it can be concluded that, both the fine-tuning on mixed 
expertise and general dataset, and the inherent language abilities, which 
are largely dependent on the model size, jointly determine the final 
specialized performance.

4.3. Integration of identification and prescription for crop disease 
diagnosis

The integration of a high efficiency deep learning vision model for 
disease identification and fine-tuned language model for disease pre
vention and control knowledge consultation, namely CDIP-ChatGLM3, 
is developed to provide practitioners with a practical and flexible tool 
for crop protection. This integration enables the rapid and accurate 
identification of crop disease and the followed timely and professional 
prescriptions as well as the interactive and instant communication.

Similar to our research, Qing et al. (2023) combined identification 
model YOLOv8 and GPT4, aiming to address the challenge of accurately 
analyzing agricultural pests and diseases images and providing diag
nostic reports. However, only two crops and a few diseases were 
involved in their research. Further, they just used the general GPT4 and 
did not fine-tune it with sufficient specialized material, resulting in the 
LLM’s inability to provide professional responses to specific crop dis
eases. Therefore, their system might not satisfy the requirements of the 
practical use of farmers.

While universal multimodal language models exhibit exceptional 
performance on general-purpose tasks and demonstrate high versatility, 
our comparative experiments revealed that their performance on 
domain-specific tasks as crop disease identification and prescription, 
remains suboptimal despite a substantially larger model size (Table 6). 
This finding is consistent with Kerdvibulvech (2025), who demonstrated 
that the zero-shot multimodal language models excel at simple, general 
tasks, but suffer from more complex, domain-specific tasks or those with 
limited training samples. This discrepancy is likely due to the reliance on 
generalized training data, resulting in a deficiency of domain-specific 
examples. Furthermore, to enhance their versatility across a broad 
range of tasks, a trade-off is made, resulting in compromised perfor
mance on domain-specific tasks. In contrast, fine-tuned on expertise 
dataset, CDIP-ChatGLM3 demonstrated high performance in crop dis
ease and prescription tasks.

Additionally, for specific-domain multimodal models, Lu et al. 
(2024) employed multimodal transformers for agricultural disease 
detection and question-answering systems. Despite the high perfor
mance they achieved, the crops and disease covered in their study are 
relatively limited and the corpus may not be as comprehensive as ours. 
Comparatively, based on extensive crops and the corresponding diseases 
images as well as the fine-tuning on the comprehensive high-quality 
corpus, our CDIP-ChatGLM3 achieved superior performance on not 
only disease identification but the prevention and control prescriptions. 
Liu et al. (2025) also fine-tuned another multimodal model to address 
the crop diagnosis problem, achieving a high accuracy on both disease 
identification and question answering. Although more images encom
passing more crops and diseases (16 crops, 60 diseases) were employed 
for training, they achieved lower identification accuracy than ours, 

possibly due to the challenge from complexity of information fusion 
between modalities and the huge data required to train multimodal 
models. By contrast, our study fine-tuned the identification model and 
the language model individually on relatively smaller dataset, and then 
integrated them, gaining a superior performance on both identification 
accuracy and accurate response. While multimodal models have shown 
promise in combining image and text data, the computer vision + fine- 
tuned LLM approach provides a more specialized, interpretable, scal
able, and resource-efficient solution for crop disease identification and 
prescription. By leveraging the strengths of separate models tailored for 
each modality, this approach is better suited for real-world agricultural 
applications, offering superior performance, flexibility, and practicality.

4.4. Deployment and potential usability assessments of CDIP-ChatGLM3

With the smallest size and a lower inference memory consumption 
compared to the most comparative multimodal models, our model de
mands considerably fewer computational resources than most of these 
multimodal LLMs, thereby enhancing the feasibility for deployment on 
consumer-grade GPUs. Specifically, CDIP-ChatGLM3 requires only 
around 13 GB of VRAM at FP16 precision for inference, enabling its 
operation on consumer-grade GPUs and supporting rapid API-based 
model inference for potential edge or mobile applications. Through 
additional quantization (e.g., 8-bit or 4-bit) or pruning, the model’s 
memory footprint can be reduced to 6 GB, 3 GB, or even lower, thereby 
expanding the range of devices capable of hosting it. To validate this 
feasibility, the model was deployed on a server equipped with a P40 
GPU featuring 20 GB of VRAM and 32 GB of system memory. Under 
these relatively moderate hardware specifications, which is lower than 
those typically required by most multimodal LLMs, CDIP-ChatGLM3 
exhibits stable performance and high accuracy.

While CDIP-ChatGLM3 delivers actionable, domain-specific disease 
prevention recommendations, it is essential to continuously collect and 
integrate feedback from end-users—such as farmers, agricultural 
extension officers, and agronomy researchers—to conduct an objective, 
comprehensive evaluation of the model under real-world farming con
ditions. To support this process, we have developed a mobile application 
that is freely available for download (https://www.united-smartag. 
com/team/#/servicedetail), thereby facilitating practical access to 
CDIP-ChatGLM3. With sufficient user data, systematic usability assess
ments will be performed to comprehensively delineate the model’s 
strengths and identify areas for improvement.

4.5. Limitations and future work

Despite promising results demonstrated in disease recognition ac
curacy and provision of prevention and control recommendations, 
several limitations persist. Firstly, although our leaf disease dataset 
comprises 48 disease types, potential misclassification could happen 
when confronted with scenarios outside the dataset or in complex real- 
world production environments. Secondly, due to the limitations of the 
large language model adopted and the acquired materials, the details for 
inquiries from farmers may still be provided with some possible errors or 
flaws occasionally, resulting in a perception of inadequacy. Finally, 
although the dual-model framework achieves high accuracy on both 
disease identification and prescription with a high efficiency and facil
itates the upgrading of individual models and continuous service pro
vision, the interaction between the vision and language modalities is not 
fully exploited due to the independent operation of the two models.

To address these issues, future research will focus on three key areas. 
The vison model will be continuously updated by incorporating the 
newly collected disease leaf images into the training process, enhancing 
our identification models. Meanwhile, the large language model should 
undergo ongoing fine-tuning and iterations using updated datasets 
related to disease prevention and control, ensuring that the system re
mains adaptable to evolving production environments. To address the 
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interaction issue between the two modalities, three key strategies will be 
implemented. First, a vision encoder will be introduced to extract image 
features, which will then be integrated with text input to the language 
model, thereby improving the model’s capacity for multimodal infor
mation utilization. Second, coupled training of vision model and lan
guage model will replace the current two steps independent training 
process, such as end-to-end co-training. This strategy will jointly opti
mize the vision model and the language model, leading to enhanced 
overall performance. Finally, an attention mechanism will be incorpo
rated into the vision model to prioritize critical image information, 
enabling the language model to effectively integrate both image and text 
data for generating prescription, rather than focusing solely on the 
keywords of the identification results.

5. Conclusions

In this study, we introduced a dual-model approach that delivered 
both accurate disease identification and timely, interactive, and precise 
prescription recommendations. This approach integrates an advanced 
deep learning vision model with a specialized Chinese language model 
that had been fine-tuned on high-quality expert materials. Three pri
mary conclusions could be drawn. Firstly, the EfficientNet-B2 based 
disease identification model we built outperformed all other models, 
achieving an accuracy of 97.97 % ± 0.16 %, a recall of 97.17 % ± 0.46 
%, an F1-score of 97.12 % ± 0.10 %, and a precision of 97.18 % ± 0.59 
% at a 95 % confidence level.

Secondly, the fine-tuned model CDIP-ChatGLM3 using Freeze 
methods with DMT training strategy, evaluated on different combina
tions of specialized and general datasets on crop disease prevention and 
control corpus datasets, outperforms other models on both specialized 
and general abilities, achieving substantially higher performance in 
terms of BLEU-4, ROUGE, and CMMLU accuracy metrics, as well as a low 
error rate.

Finally, the CDIP-ChatGLM3 achieved timely and interactive accu
rate disease prevention and control with the disease images as input, 
which substantially facilitates the farmers and ensures secure crop 
production.

In the future, we will develop identification models with even higher 
efficiency and accuracy as well as large language models with higher 
expertise and general abilities to continually update our CDIP- 
ChatGLM3 model for practical use of farmers.

Data avai lability
The data and code used in this study are available on GitHub (https: 

//github.com/SmartAG-Team/CDIP-ChatGLM3).
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