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A B S T R A C T

Effective crop management decisions, such as fertilization, irrigation, and crop protection, are closely tied to the 
crop growth stages. Precise identification of development stages is essential to optimize management practices in 
line with crop needs. While deep learning has shown promise in identifying growth stages, existing models often 
face challenges due to limited data availability and reduced accuracy in complex field conditions. To overcome 
these limitations, this study proposes a semi-supervised image classification method built on an enhanced 
ResNetRS50 architecture, named CO-ResNetRS50-SSL. This model leverages ResNetRS50 as its backbone, inte
grating Coordinate Attention (CA) for improved positional feature extraction and Omni-Dimensional Dynamic 
Convolution (ODConv) to enhance the adaptability of convolutional kernels to varying targets. Additionally, a 
semi-supervised learning framework is employed to boost generalization while minimizing dependence on 
labeled data. Ablation experiments show that semi-supervised learning boosted ResNetRS50’s accuracy from 
88.58 % to 89.36 %. Adding Coordinate Attention further increased accuracy to 89.89 %, while incorporating 
ODConv in the final CO-ResNetRS50-SSL model achieved 90.38 % accuracy, 90.59 % precision, and 90.19 % F1 
score (with 65.38 M parameters). Comparisons reveal that CO-ResNetRS50-SSL outperforms state-of-the-art 
models (FasterNet-T1, ShuffleNetV2, Swin Transformer, Vision Transformer, ConvNeXt-base) with highly sig
nificant differences (p < 0.001) and delivers robust performance across rice growth stages, with an optimal trade- 
off at 224 × 224 resolution. CO-ResNetRS50-SSL can accurately detect rice growth stages with limited labeled 
data, and its improvements in accuracy and generalization are expected to enhance decision-making in precision 
agriculture, optimizing resource allocation, reducing inputs, and advancing progress in the field of digital 
agriculture. Future work will focus on improving efficiency in utilizing unlabeled data, ensuring more balanced 
performance across different growth stages, and enhancing the model’s adaptability to other crops and more 
complex agricultural scenarios.

1. Introduction

Different crop growth stages, such as germination, vegetative 
growth, flowering, and grain filling, each require specific amounts of 
nutrients, water, growth regulators, and protection from pests and dis
eases (Ravlić et al., 2022; Sun et al., 2025; Zhao et al., 2024b). Conse
quently, farmers often schedule their management practices to align 
with these developmental stages (Nyéki and Neményi, 2022; Yue et al., 
2020). Precise identification of these stages is crucial for implementing 
appropriate agricultural interventions, optimizing resource use, and 

reducing environmental impacts (Coleman et al., 2024; Roy and Bha
duri, 2022). However, accurately distinguishing between growth stages 
can be challenging due to the subtle similarities in plant appearance and 
physiological processes across stages (Cortinas et al., 2023; de de de 
Castro Pereira et al., 2022).

Machine learning (ML)-based computer vision significantly advances 
the automation of crop trait detection, revolutionizing traditional crop 
scouting methods (Hu et al., 2023; Liu and Xu, 2023; Tian et al., 2024). 
Traditional machine learning methods, such as random forest, k-nearest 
neighbors, Gaussian naïve Bayes, support vector machine, and logistic 
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regression, have been used to estimate phenological stages in rice 
breeding. For example, ensemble models have achieved an accuracy of 
93 % on a validation dataset (Ge et al., 2021). Additionally, Zhang et al. 
(2021) combined support vector machines with principal component 
analysis for rice tiller period identification, achieving an accuracy of 
97.76 %, while Sheng et al. (2022) developed a random forest-based 
model that identified rice growth stages with 98.772 % accuracy. 
Despite these successes, such approaches typically perform well only on 
images with simple backgrounds and often struggle with 
high-dimensional data and complex nonlinear relationships. Addition
ally, they heavily depend on manually designed features, which can 
limit further improvements in accuracy (Janiesch et al., 2021).

The emergence of deep learning techniques has significantly 
enhanced crop trait identification, particularly in automating the 
detection of growth stages (Aich et al., 2018; Ferentinos, 2018; Wang 
et al., 2023; Yan et al., 2024; Yu et al., 2023). For instance, deep learning 
models like Convolutional Neural Networks (CNNs) can automatically 
learn abstract features from images, improving classification accuracy 
without the need for manually designed features (Alabsi et al., 2023). 
Notable examples include Xiao et al. (2022), who developed a 
MobileNets-based model to classify Phalaenopsis orchid growth stages 
with 98.9 % accuracy, and Tan et al. (2023), who introduced RiceR
es2Net for detecting rice panicles and growth stages with high accuracy 
in complex field environments. Schieck et al. (2023) employed ResNet, 
DenseNet, and InceptionV3 to differentiate developmental stages of 
grapes at the microscopic level, with ResNet achieving the highest 
classification accuracy, yielding an average of 88.1 %. While deep 
learning-based methods have proven effective in crop stage identifica
tion, their performance is highly dependent on the availability of 
large-scale and accurately labeled image datasets. The process of 
manually labeling these datasets is known for being error-prone, 
cumbersome, expensive, and time-consuming (Deng et al., 2025; Jan
iesch et al., 2021). Furthermore, these models often excel in identifying 
distinct growth stages with clear traits, such as booting, heading, and 
grain filling in rice (Tan et al., 2023), but their applicability is limited 
across the entire crop growth cycle. This gap highlights the need for 
enhanced model training that encompasses a broader range of growth 
stages to support comprehensive crop management throughout the 
entire cultivation period.

In recent years, semi-supervised learning (SSL) has garnered signif
icant attention for its ability to effectively combine both labeled and 
unlabeled data to enhance model performance. For instance, Amorim 
et al. (2019) demonstrated the effectiveness of semi-supervised methods 
in deep learning, highlighting that the integration of SSL with deep 
learning can achieve higher classification accuracy. Khan et al. (2021)
proposed an optimized SSL approach for classifying crops and weeds 
during early growth stages. Their experiments indicated that their 
method outperformed traditional supervised learning techniques under 
conditions with a higher proportion of unlabeled data. Li and Chao 
(2021) further introduced a semi-supervised few-shot learning method 
for plant leaf disease identification, verifying that the superiority of their 
method over other related techniques when labeled training data was 
limited. Benchallal et al. (2024) proposed a novel deep learning archi
tecture based on a semi-supervised learning paradigm, comprising a 
modern ConvNeXt-Base encoder and a carefully designed decoder for 
accurate weed species identification. These studies underscore the 
benefits of SSL when labeled data are limited, making it particularly 
well-suited for comprehensive crop growth stage recognition. However, 
integrating advanced deep learning models with SSL under complex 
field conditions remains underexplored.

To address these challenges, we hypothesize that introducing Coor
dinate Attention (CA) (Jia et al., 2024) for enhanced positional feature 
extraction and Omni-Dimensional Dynamic Convolution (ODConv) 
(Guo et al., 2023) for adaptive feature extraction into the ResNetRS50 
architecture—combined with SSL—will enable efficient and accurate 
rice growth stage recognition under complex field conditions.

In this paper, we propose CO-ResNetRS50-SSL, a deep learning 
method that integrates CA and ODConv into an improved ResNetRS50 
network with SSL. Our main contributions are as follows: 

1) A comprehensive dataset was constructed, fully considering the 
characteristics of rice plants at different growth stages, spanning 
from seeding to mature plants.

2) A semi-supervised learning method, CO-ResNetRS50-SSL, based on 
the ResNetRS50 architecture improved with CA and ODConv, was 
proposed, achieving high-accuracy recognition of key rice growth 
stages.

3) Extensive experiments including ablation and comparative experi
ments validated the high performance of our method. The varying 
performance on different growth stage identification is clarified, 
providing practical guidance for precise monitoring and manage
ment in smart agriculture.

2. Materials and methods

2.1. Overall workflow

Fig. 1 shows a three-part workflow encompassing data, model, and 
experiment. In the data phase, 21,619 rice images were collected, a 
portion of which was labeled according to the BBCH scale (Lancashire 
et al., 1991) and split into training, validation, and test sets, while 6486 
unlabeled images were reserved for semi-supervised learning. During 
the model phase, ResNetRS50 was trained on labeled data to establish a 
baseline, then enhanced by incorporating SSL (yielding 
ResNetRS50-SSL), Coordinate Attention (CA) for positional feature 
extraction (C-ResNetRS50-SSL), and Omni-Dimensional Dynamic 
Convolution (ODConv) for adaptive kernels (CO-ResNetRS50-SSL). 
Finally, in the experiment phase, ablation studies isolated the individual 
contributions of SSL, CA, and ODConv, comparative analyses measured 
performance against contemporary architectures, and different confi
dence thresholds (CTs), BBCH-stage evaluations, and image resolutions 
were tested to balance predictive accuracy with computational cost.

2.2. Dataset collection and pre-processing

2.2.1. Image data collection
The dataset was collected from rice fields across China by Northwest 

A&F University in a joint project with BASF Digital Farming GmbH 
(Zhao et al., 2024b) (Fig. 2). These fields were selected to assess the 
progression of rice diseases under natural conditions, without the 
application of fungicides. To ensure that the dataset accurately repre
sents the full rice crop life cycle, data collection and annotation were 
conducted by experienced technicians within a WeChat Mini applica
tion, named “NongQingZhuShou”. In the application, photographs were 
systematically taken every 3–4 days within the experimental fields using 
smartphones. The dataset encompasses images under a wide range of 
environmental conditions, including various weather scenarios and soil 
types, thereby enhancing the robustness and generalizability of the 
trained models. In total, 21,619 images were captured across the rice 
fields, as illustrated in Fig. 2.

2.2.2. Image data pre-processing
The images were classified and labeled according to the BBCH scale 

(Lancashire et al., 1991), a standardized scale widely used for describing 
the phenological development of plants. The principal BBCH stages 
include BBCH 1 (Leaf development), BBCH 2 (Tillering), BBCH 3 (Stem 
elongation), BBCH 4 (Booting), BBCH 5 (Heading), BBCH 7 (Develop
ment of fruit), and BBCH 8 (Ripening) (Wang et al., 2022), as shown in 
Fig. 3(a), were used to label the images. BBCH 6, which corresponds to 
flowering, is not individually represented in this dataset, as it often 
occurs concurrently with BBCH 5 in rice, making it challenging to 
differentiate them distinctly in field conditions. Of all the 21,619 
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images, we labeled 15,133 images, while 6486 images remained unla
beled, with a ratio of 7:3.

Due to the high resolution of the images captured by smartphones, 
these images could lead to insufficient GPU memory and slow processing 
speed when used directly. To address this, all images were resized to 
224 × 224 resolution, ensuring they meet the basic requirements for 
model training while accelerating the training speed.

The resized dataset was then randomly split into training, validation, 
and testing sets for each BBCH scale in a ratio of 7:1.5:1.5. Specifically, 
the training set consisted of 10,593 images, while the validation and 
testing dataset each contained 2270 images, as detailed in Fig. 3(b). This 
dataset is generally well-balanced across various growth stages. Never
theless, there is some variability in the number of images due to limi
tations in data collection, such as a smaller number of BBCH5 images 
compared to other stages.

2.3. ResNetRS50 as a baseline model

In this study, we selected ResNetRS50 as the backbone architecture. 
ResNetRS, an enhanced variant of the original ResNet (Bello et al., 
2021), further improves performance through refined training strategies 

and architectural optimizations, as evidenced by its superior results in 
large-scale benchmarks. Among the ResNetRS series, deeper models 
such as ResNetRS101 and ResNetRS152, with parameter counts of 
93.98 M and 131.69 M respectively, excel in feature extraction due to 
their increased depth and capacity (Table 1). However, their high 
computational complexity and resource demands make them less prac
tical for scenarios requiring efficiency. In contrast, ResNetRS50, with a 
significantly lower parameter count of 48.19 M, achieves a favorable 
balance between computational efficiency and performance, making it 
an optimal choice for this study.

The architecture of ResNetRS50, illustrated in Fig. 4, is composed of 
three primary components: a StemBlock, multiple ResidualBlock groups, 
and a fully connected (FC) layer. The StemBlock serves as the initial 
feature extractor, reducing spatial dimensions while increasing channel 
depth. This is followed by four distinct ResidualBlock group modules, 
each configured with a varying number of ResidualBlocks—specifically, 
3, 4, 6, and 3 blocks, respectively. These groups are designed to pro
gressively extract hierarchical features, with each group increasing the 
network’s depth and complexity while maintaining computational effi
ciency through skip connections, which mitigate vanishing gradients 
and enable stable training. The final FC layer acts as the classifier, 

Fig. 1. Overall workflow for data preparation, model improvement, and experiments. SSL represents semi-supervised learning, CA for Coordinate Attention, ODConv 
for Omni-Dimensional Dynamic Convolution. R50 represents ResNetRS50, R-SSL for ResNetRS50-SSL, C-R-S for C-ResNetRS50-SSL, and CO-R-S for Co-ResNetRS50- 
SSL. The abbreviations of the models are explained on the top of the data section.
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mapping the extracted features to the output space.
During the training of ResNetRS50, several data augmentation 

techniques were employed to enhance the model’s robustness and 
generalization capabilities. These techniques included random crop
ping, horizontal flipping, and channel normalization. Random cropping 
was applied to reduce potential biases in the dataset and encourage the 
model to focus on spatially invariant features. Horizontal flipping 
further diversified the training data by introducing mirrored versions of 
the images, improving the model’s ability to handle variations in 
orientation. For normalization, each pixel was standardized using pre- 
computed mean and standard deviation values for the Red, Green, and 
Blue (RGB) channels. Specifically, the mean and standard deviation 
values were 0.5071 ± 0.2673 for the R channel, 0.4865 ± 0.2564 for 
the G channel, and 0.4409 ± 0.2762 for the B channel. This normali
zation process ensured that the input data was centered and scaled, 
reducing the risk of bias and accelerating convergence during training. 
The final trained ResNetRS50 model, optimized through these tech
niques, served as the baseline for further enhancements using SSL, 
aiming to improve its performance and adaptability to downstream 
tasks.

2.4. Semi-supervised learning for enhancing ResNetRS50

Although ResNetRS50 demonstrated strong performance as a base
line model, its training process is heavily dependent on a large volume of 
labeled data, which can be expensive and labor-intensive to acquire in 
real-world scenarios. To address this limitation and harness the potential 
of abundant unlabeled data, we developed a semi-supervised learning 
framework, as depicted in Fig. 5. The SSL approach begins by utilizing 
the pre-trained ResNetRS50 model to predict growth stages for unla
beled images, generating pseudo-labeled images (PLIMs). However, 
low-confidence pseudo-labels may introduce inaccuracies, potentially 
leading the model to learn incorrect patterns. To mitigate this risk, a 
confidence threshold (CT) was implemented to filter out unreliable 
predictions. Only PLIMs with confidence scores exceeding the threshold 
were retained as selected pseudo-labeled images (SPLIMs), while those 
below the threshold were discarded. The SPLIMs were then combined 
with the original labeled image dataset (LIMs) to form an augmented 
dataset (LIMs + SPLIMs), which was used to retrain the ResNetRS50 
model.

2.5. Coordinate attention and omni-dimensional dynamic convolution 
enhanced ResNetRS50 model

Despite the high performance of ResNetRS50 and the deep features 
extraction ability, but its accuracy drops when the background is clut
tered (Lyu et al., 2023). To enable growth stage identification in real rice 
fields with complex backgrounds, we propose the CO-ResNetRS50 
model—an enhanced version of ResNetRS50 that integrates Coordi
nate Attention (CA) and Omni-Dimensional Dynamic Convolution 
(ODConv) modules. Its architecture is depicted in Fig. 6. ResidualBlock 
is the basic unit of the network, determining the overall performance of 
the network to a large extent. Therefore, the network was improved by 
enhancing the ResidualBlocks with the incorporation of CA and 
ODConv, resulting in the COResidualBlock. Firstly, CA was introduced 
after the third BatchNormReLU layer and before the SE module in the 
COResidualBlock, with the reduction parameter set to 32 (Fig. 6, c). This 
modification aimed to enhance ResNetRS50 network’s capability to 
extract positional information while avoiding significant computational 
overhead. Secondly, the convolution following the downsampling and 
preceding the first BatchNormReLU layer was replaced with ODConv in 
the COResidualBlock. In this configuration, the convolutional layer uses 
4 kernels, each with a size of 1 and a stride of 1 (Fig. 6, c). This sub
stitution was intended to improve the convolutional kernels’ ability to 
capture target features, enhance the network’s sensitivity to feature 
extraction, and minimize the increase in model computational 
complexity as much as possible.

2.5.1. Coordinate attention
The field environment is characterized by its complexity and di

versity, with background elements such as weeds, soil, and varying 
lighting conditions introducing significant noise. This makes it chal
lenging for models to rely solely on global semantic features for accurate 
judgments. Therefore, it is essential for models to identify and localize 
fine-grained features in the target regions, such as the position of specific 
leaves, the distribution of panicles, or the arrangement of plants. 
Capturing detailed positional information allows models to distinguish 
target features from the complex background, enhancing their ability to 
differentiate between different growth stages. While ResNetRS50 excels 
in extracting high-level semantic features, it tends to overlook crucial 
positional information and struggles to capture long-distance de
pendencies between features (Panda et al., 2022; Guo et al., 2022). This 
limitation is especially evident in the complex field conditions of rice 
crop where both spatial and semantic details are crucial for accurate 
stage identification. To improve performance in such tasks, we enhanced 
ResNetRS50’s ability to extract and interpret positional information, 
thereby enabling more accurate differentiation between growth stages.

Incorporating mechanisms like Coordinate Attention (CA) can 
address this limitation by embedding spatial dependencies into the 
model’s feature extraction process (Hou et al., 2021). CA enhances the 
model’s ability to focus on both specific image regions and their relative 
positions, which is particularly valuable for rice growth stage recogni
tion in complex scenes. By horizontally and vertically integrating feature 
information through two 1D global pooling operations, CA encodes 
feature maps into two attention maps, allowing the model to capture 
long-distance dependencies. This structure strengthens the model’s un
derstanding of spatial relationships, improving its overall performance 
in tasks that require detailed spatial feature extraction. As illustrated in 
Fig. 7, CA consists of four main components that work together to guide 
the model’s attention towards relevant positional information. This 
mechanism enables the model to concentrate on key growth stage fea
tures of rice plants while minimizing the influence of irrelevant back
ground details. The specific computation steps and corresponding 
operations are described below (Hou et al., 2021).

First, it performs average pooling on the feature map separately 
along the vertical and horizontal directions. This operation ensures that 
each output feature point contains information specific to either the 

Fig. 2. Map of experimental rice field locations where photos were captured; 
each point represents a unique observation site of experimental rice field for the 
image dataset collection.
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vertical or horizontal direction, thereby capturing the structural pat
terns present in complex field images more effectively. By transforming 
the feature channels in both the vertical and horizontal directions, the 
network can more precisely localize the target of interest. The opera
tions for average pooling in the vertical and horizontal directions are 
shown in Eq. 1 and Eq. 2.

Eq. 1 represents the sum of all pixel values in the width direction at a 
specific height h in the feature map xC, divided by the width W, resulting 
in the average value αh

C(h) at that height. 

αh
C(h) =

1
w

∑

0≤j<w
xc(h, i) (1) 

where αh
C(h) represents the pooling result in the vertical (height) di

rection of the feature map, indicating the mean pixel value at height h 
across all width directions.

Eq. 2 represents the sum of all pixel values in the height direction at a 
specific width w in the feature map xC, divided by the height H, resulting 
in the average value αw

C(w) at that width. 

αw
C(w) =

1
H

∑

0≤j<H
xc(j,w) (2) 

where αw
C(w) represents the pooling result in the horizontal (width) di

rection of the feature map, indicating the mean pixel value across all 
height directions at the width w.

Afterwards, the feature maps after channel pooling are concatenated 
to obtain a new feature map, which contains both vertical and horizontal 
global information. This global information enhances the model’s ability 
to better understand the growth characteristics of the rice plants. A 1× 1 
convolution operation is then applied to the concatenated feature map 

Fig. 3. Representative image examples of rice growth stages and morphological features captured during field measurements, along with the corresponding dis
tribution of the images across the training, validation, and test datasets. (a) Examples showcasing various growth stages and rice morphologies. (b) Distribution of 
rice images by growth stage (in BBCH code) in the training, validation, and test datasets.

Table 1 
Comparison of ResNetRS Series Models (Bello et al., 2021) in Terms of Param
eter Count, Latencies on Tesla V100 GPUs (V100 Lat), Latencies on TPUv3 (TPU 
Lat), and Top-1 Accuracy. Results are based on training the models on the 
ImageNet dataset using TensorFlow 1.11

Model Parameter 
(M)

V100 Lat 
(s)

TPU Lat 
(ms)

Top-1 Accuracy 
(%)

ResNetRS50 48.19 0.31 70 78.8
ResNetRS101 93.98 0.70 170 81.2
ResNetRS152 131.69 1.48 320 82.2
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to integrate the information and reduce the number of channels. 

Following this, the features are normalized through a batch normali
zation layer to accelerate the training process and enhance the stability 
of the model. Finally, a nonlinear activation function is applied to the 
convolution result to obtain the intermediate feature map, as shown in 
Eq. 3. 

f = σ
(
T1

[
αh

C,αw
C
] )

(3) 

where [αh
C,αw

C ] represents the concatenation of αh
C and αw

C . T1 denotes a 
1 × 1 convolution, σ is the non-linear activation, and f represents the 
intermediate feature map, where f ∈ RC/r×(W+H). The reduction ratio r 
controls the parameter size, and is set to the value of r= 32, a value 
chosen based on previous research (Hou et al., 2021). Reducing r in
creases the model’s parameter count. Therefore, the default setting 
strikes an optimal balance between performance and complexity.

Then, a 1 × 1 convolution operation is applied separately to the 
vertical feature map and the horizontal feature map, which are extracted 
from the intermediate feature map, to integrate the information and 
generate feature weights. This design improves the model’s ability to 
capture directional attention, enabling it to differentiate between the 
vertical growth patterns of rice panicles from the horizontal expansion 
of leaves. Subsequently, a Sigmoid activation function is applied to the 
convolution results to obtain the vertical feature weights and horizontal 
feature weights. The specific operations are shown in Eq. 4 and Eq. 5 . 

βh
C = δ

(
Th

(
fh
))

(4) 

where fh represents the vertical intermediate feature map with 
fh ∈ RC/r×H. Th is a vertical 1 × 1 convolution, δ is the Sigmoid activa
tion, βh

C denotes the vertical feature weight with βh
C ∈ RC×H×1. 

βw
C = δ(Tw(fw) ) (5) 

where fw represents the horizontal intermediate feature map with 
fw ∈ RC/r×W . Tw is a horizontal 1 × 1 convolution, βw

C represents the 
horizontal feature weight with βw

C ∈ RC×1×W.
At the end, vertical and horizontal attention weights are applied to 

each pixel of the original input feature map through a broadcasting 
mechanism, thereby generating an output feature map that contains 
positional information. This can be obtained by Eq. 6. 

yC(i, j) = xC(i, j) × βh
C(i) × βw

C(j) (6) 

where yC(i, j) represents the pixel value at position (i, j) in the output 
feature map, while xC(i, j) represents the pixel value at position (i, j) in 
the original input feature map. βh

C(i) denotes the vertical feature weight 
at row i, and βw

C(j) represents the horizontal feature weight at column j.
Through these steps, the model is able to focus on regions with 

important spatial relationships, avoiding the loss of positional infor
mation caused by traditional 2D global pooling, thereby enhancing 
ResNetRS50’s performance in tasks with complex background features.

2.5.2. Omni-dimensional dynamic convolution
The traditional convolution operation employs fixed convolution 

kernels, and these static weights cannot adjust based on image content, 
making it difficult to adapt to the complex and dynamic background of 
field environments, such as interference from weeds, soil, and shadows. 
Therefore, Omni-Dimensional Dynamic Convolution (ODConv) (Li et al., 
2022) was introduced to replace the standard convolutions in 
ResNetRS50, enhancing the convolution kernels’ adaptive ability to rice 
crop features under complex field conditions.

ODConv utilizes a novel multi-dimensional attention mechanism to 
compute four types of attention, αsi, αci, αfi, and αwi, in a parallel manner 
along all four dimensions of the kernel space (spatial dimension, input 
channel dimension, output channel dimension, and kernel dimension of 
the convolutional kernel space)(Fig. 8). Specifically, a global average 

Fig. 4. Overview of the ResNetRS50 architecture, which begins with a Stem 
Block for initial feature extraction, followed by multiple Residual Blocks for 
deep feature learning, and concludes with a FC (Fully Connected) layer for final 
classification.

Fig. 5. Overview of the proposed semi-supervised learning pipeline for rice 
growth stage recognition. ULIMs (Unlabeled images) are used to generate 
PLIMs (pseudo-labeled images), which are then filtered by a CT (confidence 
threshold) to produce SPLIMs (selected pseudo-labeled images). These SPLIMs 
are combined with LIMs (labeled images) for training. For each CT value (0.85, 
0.875, 0.90, 0.925, 0.95), ResNetRS50 is trained for 80 epochs.

1 V100 Lat represents Latencies on Tesla V100 GPUs, and TPU Lat represents 
Latencies on TPUv3.
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pooling (GAP) operation is first applied to the input feature map, to 
compress the original input features x into a feature vector of length cin. 
This operation effectively captures the global information of rice images 
along the channel dimension. Subsequently, a fully connected (FC) layer 
maps the compressed feature vector to a lower-dimensional space with a 
reduction ratio of 1/16. This mapping process helps reduce computa
tional complexity while focusing on retaining the critical growth stage 
features of rice, though it may increase some computational cost and 
memory usage in large-scale datasets or complex scenarios. An ReLU 
activation function follows the FC layer, introducing non-linearity and 
enabling the model to flexibly represent the distinctive features of 
different rice growth stages. Then, four branches calculate attention 
scalars for each dimension separately. Each branch contains an FC layer 
and an activation function (Sigmoid or Softmax) to generate normalized 
attention values. These four attentions, spatial-level, input channel- 

level, output channel-level, and kernel-level attention, are sequentially 
applied to the convolution kernel Wi. By dynamically adjusting the 
weights at each level, the convolution operation becomes adaptive to all 
spatial positions, input channels, output channels, and kernels of the 
input x. At the spatial-level attention stage, the model focuses on key 
areas of the feature map, such as significant regions of leaves and pan
icles, effectively capturing subtle differences between similar growth 
stages. In input channel-level attention stage, weights are dynamically 
adjusted based on the features of the input channels, enhancing the 
extraction of relevant features from the target area while minimizing the 
interference from irrelevant information. Similarly, in output channel- 
level attention stage, the model adaptively modifies weights to 
emphasize task-relevant features from the output channels. In kernel- 
level attention, the weights of the convolution kernels are adjusted 
dynamically based on the input features, improving the model’s ability 

Fig. 6. Network architecture of the proposed CO-ResNetRS50, highlighting ODConv (Omni-Dimensional Dynamic Convolution) and Coordinate Attention (in red) as 
the key improvement modules. (a) The overall pipeline consists of a StemBlock, multiple COResidualBlocks, and a FC (Fully Connected) layer. (b) The StemBlock 
includes Conv2D, BatchNorm, ReLU, and MaxPool layers. (c) Each COResidualBlock integrates AvgPool, Conv2D, ODConv, BatchNorm, ReLU, Coordinate Attention, 
and an SEBlock. (d) The FC module is composed of AvgPool, DropOut, and Linear layers. (e) The SEBlock includes AdaptiveAvgPool, Linear, DropOut, and Sig
moid layers.

C. Yan et al.                                                                                                                                                                                                                                     European Journal of Agronomy 168 (2025) 127631 

7 



to focus on essential areas. For instance, kernel-level attention can 
highlight the edge details of rice panicles while suppressing background 
noise. Finally, the adjusted convolution kernels are applied to the input 
features, generating adaptive dynamic convolution results. This convo
lution operation can automatically adjust the size and shape of the 
convolution kernels based on the image content, enabling more effective 
extraction of critical features from the image.

ODConv can be calculated in terms of Eq. 7 (Li et al., 2022): 

y =
(
αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙ W1 +⋯+αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙ Wn

)
∗ x

(7) 

where x and y represent the input and output features, respectively; 
αwi ∈ R denotes the attention scalar for the convolutional kernel Wi; 
αsi ∈ Rk×k, αci ∈ Rcin and αfi ∈ Rcout denote three newly introduced at
tentions, which are computed along the spatial dimension, input chan
nel dimension and output channel dimension of the kernel space for the 
convolutional kernel Wi, respectively; ⊙ denotes the multiplication op

Fig. 7. Diagram of the Coordinate Attention module. The input feature map undergoes separate X Avg Pool and Y Avg Pool (X and Y average pooling), Concat 
(concatenation), and then passes through Conv2d (convolution), BatchNorm (batch normalization), Non-linear (non-linear activation), Conv2d (convolution), and 
Sigmoid (sigmoid gating). The resulting attention maps re-weight the original input (Residual), enhancing both spatial and channel-wise feature representation.

Fig. 8. Schematic of the ODConv (Omni-Dimensional Dynamic Convolution). The structure includes GAP (Global Average Pooling), FC (Fully Connected) layers, 
ReLU, Sigmoid, and Softmax operations, which collectively compute four attention coefficients (αsi, αci, αfi, and αwi) for the kernel weights (Wi). This multidi
mensional attention mechanism spans all four dimensions of the kernel space, enabling more adaptive and expressive feature learning.
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erations along different dimensions of the kernel space; * represents the 
convolution operation.

2.6. Experimental design and setup

2.6.1. Ablation experiments
The first series of experiments aimed to isolate the impact of each 

proposed enhancement on the ResNetRS50 architecture. Initially, the 
baseline model was trained in a fully supervised setting using only the 
labeled images from the dataset, establishing a reference point in terms 
of accuracy (Eq. 9), precision (Eq. 10), recall (Eq. 11), F1 score (Eq. 12), 
training time. Next, semi-supervised learning (SSL) was integrated by 
generating pseudo-labeled images (PLIMs) from unlabeled data. A 
confidence threshold (CT) mechanism was employed to filter these 
PLIMs into selected high-quality pseudo-labeled images (SPLIMs). Sub
sequently, Coordinate Attention (CA) was incorporated into the Resi
dualBlock to enhance the network’s ability to capture spatial and 
positional cues. Finally, standard convolutional layers within the Resi
dualBlock were substituted with Omni-Dimensional Dynamic Convolu
tion (ODConv) to enable dynamic kernel adaptation based on image 
content. Performance evaluations were conducted after the incremental 
addition of each module, allowing us to assess both the individual 
contributions and the cumulative effect on model performance.

To evaluate the effectiveness of the performance enhancement 
modules, a t-test was conducted to assess the statistical significance of 
the performance differences between the CO-ResNetRS50-SSL model 
and models with progressively integrated enhancement modules. Each 
model underwent five independent runs. Then t-tests were performed 
and p-values were calculated for each performance metric to assess the 
significance of performance differences. If p ≤ 0.001 (denoted as ***), it 
indicates a highly significant difference; if 0.001 < p ≤ 0.01 (denoted as 
**), it indicates a significant difference; if 0.01 < p ≤ 0.05 (denoted as 
*), it indicates a moderate difference; and if p > 0.05 (denoted as ns), it 
indicates no statistically significant difference.

2.6.2. Comparative analysis with contemporary models
To comprehensively validate the efficacy of our proposed approach, 

the CO-ResNetRS50-SSL model was rigorously compared against several 
state-of-the-art deep learning architectures. The comparative models 
included ConvNeXt-base (Liu et al., 2022), FasterNet-T1 (Chen et al., 
2023), ShuffleNetV2 (Ma et al., 2018), Swin Transformer (Liu et al., 
2021), and Vision Transformer (Dosovitskiy et al., 2020). Unlike these 
models—which were trained exclusively on the fully labeled data
sets—the CO-ResNetRS50-SSL model was trained using a combination of 
the fully labeled and unlabeled data, thereby leveraging additional in
formation to enhance performance. For a robust baseline, the standard 
ResNetRS50 model was also included in the analysis.

T-tests were also employed to assess whether the performance dif
ferences between the CO-ResNetRS50-SSL model and the comparative 
models were statistically significant. For each metric (accuracy, preci
sion, recall, and F1 score), we compared the outcomes from five inde
pendent experimental runs of the CO-ResNetRS50-SSL model with those 
from five runs of each comparative model, ensuring robust and repro
ducible performance evaluations. The same evaluation methods were 
employed as in ablation experiments. This approach provides a rigorous 
framework for comparing the performance of the proposed method with 
the contemporary models under controlled and replicable conditions.

2.6.3. Optimal confidence threshold selection for semi-supervised learning
To determine an optimal confidence threshold, we evaluated five 

candidate values (0.85, 0.875, 0.9, 0.925, and 0.95), chosen to balance 
the trade-off between the quantity and quality of pseudo-labeled data. A 
threshold below 0.85 risked introducing excessive noise from low- 
confidence labels, while a threshold above 0.95 could overly restrict 
the pool of pseudo-labeled data, diminishing the benefits of SSL. Given 
that the model typically converged within 80 training epochs, the SSL 

process was iterated for 80 epochs for each threshold. After each training 
cycle, the model’s performance was assessed using a held-out test 
dataset. This iterative evaluation allowed us to systematically analyze 
the influence of different confidence thresholds on model accuracy, ul
timately identifying the optimal threshold for integrating pseudo- 
labeled data into the training process. By leveraging SSL, we signifi
cantly reduced the reliance on labeled data while maintaining robust 
model performance.

2.6.4. Performance evaluation across different rice growth stages
We also investigated performance by principal BBCH code to detect 

class-specific weaknesses or biases. Each of the four main models 
(ResNetRS50, C-ResNetRS50-SSL, CO-ResNetRS50-SSL, and an addi
tional baseline) was evaluated on a held-out test set, and we generated 
confusion matrices to visualize inter-class accuracy.

2.6.5. Impact of image resolution on model accuracy
To assess the impact of image resolution on model performance, the 

dataset was preprocessed at three resolutions (128 × 128, 224 × 224, 
and 512 × 512) and split into training and test sets at each resolution. 
Training and inference both used the same resolution in each experi
ment. All models were trained with identical hyperparameters, data 
augmentation strategies, and training schedules, ensuring that any 
variations in performance resulted solely from changes in resolution. 
Evaluations covered both predictive metrics (accuracy (Eq. 9), precision 
(Eq. 10), recall (Eq. 11), F1 score (Eq. 12)) and computational metrics 
(training time and inference latency). This approach enabled a detailed 
comparison of accuracy–efficiency trade-offs, facilitating the selection 
of an optimal resolution that balances performance with computational 
demands.

2.6.6. Computing environment and configuration
Our study was carried out in a Windows 11 environment using an 

Intel Core i9–14900K CPU, 128 GB RAM, and a GeForce RTX 4090 GPU 
with 24 GB VRAM. We used PyTorch 2.4.0 and Python 3.10.14 with 
CUDA 12.5 for deep learning model training, validation, and testing. 
Models were trained for 80 epochs, starting with a learning rate of 0.01, 
which was reduced to one-tenth of the current learning rate every 30 
epochs. The batch size was set to 32. The Stochastic Gradient Descent 
(SGD) optimizer, with a momentum of 0.9 and weight decay of 0.0005, 
was employed. CrossEntropyLoss was used as the loss function (Mao 
et al., 2023): 

L = −
1
N

∑N

i=1

∑C

c=1
yiclog(pic) (8) 

where N is the number of samples; C is the number of classes; yic is the 
true label of the i-th sample for class c, where yic = 1 if the sample be
longs to class c, otherwise yic = 0; and pic is the predicted probability of 
the i-th sample for class c.

2.7. Evaluation metrics

To evaluate the model’s classification performance on the rice 
growth stage dataset and compare it with other network models, mul
tiple metrics were employed, including accuracy, precision, recall, F1- 
score, parameter size and computing time. These metrics were chosen 
to provide a comprehensive assessment of each model’s effectiveness 
across various aspects of classification, such as the model’s ability to 
correctly identify growth stages, minimize false positives and negatives, 
and balance precision and recall. The performance was calculated using 
the standard equations (Eqs. 9–12) for each metric to ensure objective 
comparisons (Qin et al., 2023). 

Accuracy =
TP + TN

TP + TN + FP + FN
(9) 
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Precision =
TP

TP + FP
(10) 

Recall =
TP

TP + FN
(11) 

F1score =
2 × Precision × Recall

Precision + Recall
(12) 

where TP denotes true positives; TN is true negatives; FN is false nega
tives; FP is false positives.

3. Results

3.1. Cumulative enhancements of ResNetRS50 via SSL, CA, and ODConv 
in ablation study

The performance improvements across the different model varia
tions in Ablation Experiments are summarized in Fig. 9. The baseline 
ResNetRS50 achieved 88.58 % accuracy, 88.02 % recall, 88.85 % pre
cision, and an 88.35 % F1 score using 48.19 M parameters. When semi- 
supervised learning was added, accuracy improved to 89.36 % and 
precision to 89.84 %, with recall and F1 score also increasing slightly 
while the parameter count remained the same. Adding coordinate 
attention further enhanced performance to 89.89 % accuracy, 89.32 % 
recall, 90.02 % precision, and an 89.62 % F1 score, with a minor 
parameter increase to 50.11 M. Finally, replacing standard convolution 
with omni-dimensional dynamic convolution yielded the best overall 
results—90.38 % accuracy, 89.88 % recall, 90.59 % precision, and a 
90.19 % F1 score—though the parameter count rose to 65.38 M. Sta
tistical tests confirmed that these improvements are significant, with 
most metrics showing p-values below 0.001, except for one precision 
comparison which was significant at p < 0.05.

3.2. Performance comparison with state-of-the-art models

Fig. 10 shows that CO-ResNetRS50-SSL outperforms all other models 
on various metrics, despite having a relatively modest parameter count 
(65.38 M). Although FasterNet-T1 (6.32 M parameters) and Shuf
fleNetV2 (1.26 M parameters) are much smaller, they have significantly 
lower accuracy (88.41 % and 87.26 %) and F1 scores (87.82 % and 
86.42 %). Meanwhile, even though Swin Transformer (27.52 M) and 
Vision Transformer (85.80 M) have more parameters, their accuracy 
(83.85 % and 83.73 %) and F1 scores (82.90 % and 82.59 %) remain 
lower. Similarly, ConvexNet-base also achieves much lower perfor
mance with the largest parameter size. These results show that CO- 
ResNetRS50-SSL not only achieves higher accuracy but also makes 
more efficient use of parameters. Moreover, t-tests confirm that the 
differences between CO-ResNetRS50-SSL and the other five models are 
highly significant (p < 0.001), underscoring CO-ResNetRS50-SSL’s su
perior performance.

3.3. Impacts of confidence thresholds on model performance

The results of the confidence threshold (CT) experiments on the test 
set are shown in Fig. 11. When applying SSL with increasing CTs to 
ResNetRS50, the model’s performance first increased, then declined, 
followed by a subsequent rise, and ultimately declined again. At the CT 
of 0.85, all performance metrics were improved against the baseline 
model. Specifically, accuracy was increased from 88.59 % to 89.30 %, a 
rise of 0.71 percentage points; recall was slightly improved to 88.50 %; 
precision was significantly increased to 89.45 %; and the F1 score 
correspondingly rose to 88.93 %. However, when the CT was further 
increased to 0.875, although precision was 0.20 % higher than that of 
the baseline model, all other metrics were the lowest. At the CT of 0.90, 
the model achieved its highest performance, with an accuracy of 
89.38 %, representing a 0.79 % improvement over the baseline model. 
Recall increased to 88.73 %, while precision and F1 score reached 

Fig. 9. Ablation study results comparing the baseline ResNetRS50, its semi-supervised extension (denoted as ResNetRS50-SSL), the addition of Coordinate Attention 
(denoted as C-ResNetRS50-SSL), and the final integration of ODConv (Omni-Dimensional Dynamic Convolution) module (denoted as CO-ResNetRS50-SSL). Bars 
represent accuracy, recall, precision, F1 score, and parameter count, with p < 0.05 and p < 0.001 indicating statistically significant improvements over the pre
vious variant.
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89.38 % and 89.17 %, respectively. However, when the CT was raised to 
0.95, precision improved further to 89.95 % before declining, while all 
other metrics showed varying degrees of decline.

Fig. 12 illustrates the changes of selected pseudo-labeled images 
(SPLIMs) numbers added with the increasing epoch numbers under 
different CTs in SSL. It is evident that, under the same epoch, the number 
of added unlabeled samples gradually decreased with the increasing CT. 
Notably, the number of images added by ResNetRS50-SSL-85 was 
significantly higher than that of other methods and the number added by 
ResNetRS50-SSL-925 was the lowest. Further, despite the highest ac
curacy achieved by the model with CT of 0.90, the number of pseudo- 
labeled image added by it was moderate. Overall, ResNetRS50 model 
utilizing SSL was generally found to perform better than the original 
ResNetRS50 model. At the CT of 0.90, the best overall performance was 
achieved, achieving the highest accuracy while using significantly fewer 
unlabeled images than the 0.85 and 0.875 thresholds. Therefore, for 
subsequent experiments, 0.90 was selected as the CT for SSL.

3.4. Performance at different rice growth stages

The results of different rice growth stages recognition using different 
models are shown in Fig. 13. In BBCH 1 (leaf development), CO- 
ResNetRS50-SSL achieved the highest accuracy of 96.52 %, followed 
by ResNetRS50 and C-ResNetRS50-SSL with slight variations. For BBCH 
2 (tillering), all models performed with similar high accuracy, with C- 
ResNetRS50-SSL slightly outperforming the others. In BBCH 3 (stem 
elongation), ResNetRS50 had the highest accuracy, while the other 
models showed lower performance. For BBCH 4 (booting), both CO- 
ResNetRS50-SSL and C-ResNetRS50-SSL achieved the highest accuracy 
of 91.90 %. In BBCH 5 (inflorescence emergence), CO-ResNetRS50-SSL 
also showed the highest accuracy of 84.30 %, while the other models 
demonstrated lower performance. For BBCH 8 (ripening), CO- 
ResNetRS50-SSL again performed strongly, although C-ResNetRS50- 
SSL slightly outperformed it in BBCH 7 (fruit development). Overall, CO- 
ResNetRS50-SSL generally achieved the highest performance, particu
larly in the later growth stages (BBCH 1, 4, 5, and 8), while ResNetRS50 

Fig. 10. Performance comparison of our model CO-ResNetRS50-SSL to five State-of-the-Art Models (ConvNeXt-base, FasterNet-T1, ShuffleNetV2, SwinTransformer, 
Vision Transformer) on the test set, evaluated using metrics including accuracy, recall, precision, F1 score, and parameter count. * * denotes p ≤ 0.01, * ** denotes 
p ≤ 0.001, with smaller p-value indicating stronger significance in the difference between the model and CO-ResNetRS50-SSL.
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performed best in BBCH 3. The results suggest distinct differences in 
model performance depending on the specific rice growth stage.

Fig. 14 presents confusion matrices for ResNetRS50, ResNetRS50- 

SSL, C-ResNetRS50-SSL, and CO-ResNetRS50-SSL. In the ResNetRS50 
matrix, BBCH 2 is occasionally mislabeled as BBCH 1 and BBCH 3, and a 
number of BBCH 3 samples appear under BBCH 4. In ResNetRS50-SSL, 

Fig. 11. Impact of five different confidence thresholds (0.85, 0.875, 0.90, 0.925, 0.95) on the performance of ResNetRS50 trained with semi-supervised learning. The 
Baseline represents the performance achieved by the original ResNetRS50 without the adoption of semi-supervised learning.

Fig. 12. Numbers of pseudo-labeled images incorporated into the training set over 80 epochs for different confidence thresholds (0.85, 0.875, 0.90, 0.925, 0.95). 
Each curve (ResNetRS50-SSL-85, − 875, − 90, − 925, − 95) shows how varying the threshold affects the integration of unlabeled data into training.
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Fig. 13. Accuracy comparison of four different models (ResNetRS50, ResNetRS50-SSL, C-ResNetRS50-SSL, and CO-ResNetRS50-SSL) in identifying multiple key 
growth stages of rice (BBCH 1,2,3,4,5,7,8). The darker the color on the heatmap on the right, the higher the classification accuracy.

Fig. 14. Confusion matrices comparing four models—(a) ResNetRS50, (b) ResNetRS50-SSL, (c) C-ResNetRS50-SSL, and (d) CO-ResNetRS50-SSL—for rice growth 
stage prediction using the principle BBCH code. The vertical axis indicates the true BBCH code, and the horizontal axis shows the predicted BBCH code. Correctly 
classified samples lie on the main diagonal, with darker colors signifying higher classification accuracy. The color bar on the right displays the distribution of correct 
predictions, where greater intensity corresponds to a larger number of correctly classified samples.
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similar overlaps persist among BBCH 2, 3, and 4, and certain BBCH 4 
instances appear under BBCH 5. C-ResNetRS50-SSL continues to show 
confusion between BBCH 3 and BBCH 4, along with some BBCH 2 
samples classified as BBCH 1. Meanwhile, CO-ResNetRS50-SSL also in
dicates misclassifications among adjacent stages, particularly those that 
share morphological traits (e.g., BBCH 2, 3, and 4). Overall, these pat
terns highlight how incremental phenotypic changes between closely 
related growth stages lead to classification errors across all four models.

3.5. Impacts of training image resolution on model performance

Fig. 15 summarizes the CO-ResNetRS50-SSL model’s performance at 
three image resolutions. At 128 × 128, the model achieves 88.37 % 
accuracy, 85.91 % recall, 89.58 % precision, an F1 score of 87.75 %, a 
training duration of 1.48 hours, and an inference latency of 18.94 mil
liseconds. When trained at 224 × 224, it attains a significantly increased 
accuracy of 90.31 %, recall of 88.97 %, precision of 90.53 %, F1 score of 
89.75 %, a slightly increased training duration of 2.68 hours, and la
tency of 19.02 milliseconds. At 512 × 512, the model records a slightly 
changed accuracy, recall, precision, an F1 score, a significantly 
increased training duration of 9.35 hours, and latency of 19.85 milli
seconds. It demonstrates that higher resolutions yield only marginal 
gains in accuracy and recall but demand significantly more training 
time, whereas intermediate resolutions provide a more balanced trade- 
off between performance and computational cost.

4. Discussion

Accurate identification of crop growth stages is essential for opti
mizing management practices and scheduling agriculture activities 
accordingly. However, existing deep learning models face challenges, 
especially in complex field conditions with limited labeled data. To 
address these challenges, the CO-ResNetRS50-SSL model, a semi- 
supervised based image classification model that incorporates CA and 
ODConv Modules for model enhancements, was proposed, and its per
formance to identify the key growth stages were tested.

4.1. The benefits of semi-supervised learning

The experimental results demonstrated the clear advantage of semi- 
supervised learning in improving model performance. Our SSL- 
enhanced model, CO-ResNetRS50-SSL, consistently outperformed the 
baseline across all metrics, with accuracy showing the most significant 
improvement. These findings align with the work of Liu et al. (2023), 
who also observed that SSL improves model generalization by effec
tively leveraging both labeled and unlabeled data. Importantly, this 
study provides new insights into the impact of label prediction confi
dence on SSL’s benefits. Specifically, our results show that models such 
as ResNetRS50-SSL-85, which incorporated a larger amount of unla
beled data with a lower CT, did not perform as well as 
ResNetRS50-SSL-90, which used fewer unlabeled data but with a higher 
CT. This indicates that the quality of pseudo-labeled data, governed by 
the CT, plays a more critical role in determining model accuracy than the 
sheer quantity of unlabeled data. This finding supports the theory that 
incorporating too much low-confidence data can introduce noise and 
reduce overall model performance, suggesting diminishing returns when 
the CT is too low. However, as the CT is further increased to 0.925 and 
0.95, while the precision improves at a CT of 0.925, the other metrics 
show varying degrees of decline. This indicates that although 
high-confidence pseudo-labels contribute to improved precision, the 
reduced number of incorporated unlabeled samples limit the diversity of 
the training data, thereby weakening the model’s generalization ability. 
Therefore, it can be concluded that, selecting an optimal CT is key to 
maximizing the effectiveness of SSL. While semi-supervised learning has 
demonstrated its potential to enhance model accuracy, its overall 
contribution in this study remains moderate. Further research is neces
sary to fully exploit its capabilities for achieving greater accuracy 
improvements.

4.2. Model enhancement with CA and ODConv modules

The ablation experiments reveal that integrating Coordinate Atten
tion (CA) into the model results in significantly improved performance, 

Fig. 15. Performance comparison of CO-ResNetRS50-SSL on the datasets with three different training image resolutions (128 × 128, 224 × 224, and 512 × 512), 
evaluated using metrics including accuracy, recall, precision, F1 score, training time, and latency.
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particularly in its ability to identify and classify features in complex 
datasets. The CA module enhances the network’s capacity to capture and 
interpret the relative positional and structural relationships between 
objects in an image. This improvement is crucial for classification tasks 
where backgrounds are complex (Zhao et al., 2024a), such as in crop 
fields, where distinguishing crops from their environment is essential 
(Pochet et al., 2023). By encoding positional information effectively, CA 
not only strengthens the model’s ability to capture long-range de
pendencies but also mitigates the limitations observed in other attention 
mechanisms like BAM (Park et al., 2018) and CBAM (Woo et al., 2018), 
which are less effective in modeling these relationships. Studies have 
shown that models equipped with positional encoding, such as CA, can 
significantly enhance the interpretability and representational power of 
neural networks in spatially complex tasks (Hou et al., 2021).

Additionally, the introduction of Omni-Dimensional Dynamic 
Convolution (ODConv) further boosts the model’s performance by 
allowing the convolutional kernels to dynamically adapt to varying 
feature sizes, shapes, and orientations within the data (Li et al., 2022). 
Traditional convolutional layers often struggle to accommodate this 
variability, particularly in scenarios where the target features exhibit 
significant diversity, such as in agricultural fields where crops may 
appear at different scales and conditions. ODConv enhances the flexi
bility of the convolutional operation by dynamically adjusting the con
volutional filters to better fit the target features, thereby increasing the 
network’s capacity to generalize across different instances. This adapt
ability is especially advantageous in different field conditions, where 
variations in crop appearance are influenced by growth stages, envi
ronmental factors, and camera perspectives. Nevertheless, ODConv also 
increases the model’s parameter count. Unlike traditional convolutions, 
which use fixed convolutional kernels, ODConv requires additional pa
rameters to store the dynamic adjustment mechanisms, which may 
reduce the model’s real-time performance and practicality, especially 
when computational resources are limited.

From a theoretical perspective, the improvements seen with CA and 
ODConv can be explained by their complementary roles in feature 
extraction. CA enhances the model’s sensitivity to spatial structures by 
embedding positional cues directly into the feature maps, thereby 
guiding the model in distinguishing between objects in the image more 
effectively (Hou et al., 2021). ODConv, on the other hand, increases the 
model’s flexibility by allowing the convolutional kernels to better align 
with the inherent variability in the data, which is crucial when handling 
complex and dynamic agricultural scenes. Together, these two modules 
address the limitations of traditional convolutions, which often assume 
fixed, context-independent kernel operations, and attention mecha
nisms, which may fail to model positional dependencies effectively. 
While CA and ODConv demonstrated exceptional performance in 
various applications, their efficacy may be constrained in scenarios 
where the distinction between target features and features of other 
classes is minimal.

4.3. The model performance across key growth stages

Despite attaining superior overall accuracy, CO-ResNetRS50-SSL 
exhibited certain weaknesses, particularly in distinguishing the stem 
elongation (BBCH 3) and heading (BBCH 5) stages. These stages are 
characterized by subtle morphological shifts that can overlap with 
adjacent growth phases, such as booting (BBCH 4), making classification 
difficult (Qin et al., 2023). In the case of heading (BBCH 5), the limited 
sample size further complicates classification. The model is more prone 
to bias toward stages with greater representation in the dataset, leading 
to errors in minority class recognition, as noted by Bailly et al., (2022). 
Another challenge arises from the visual prominence of the panicle, 
which emerges in the heading stage. This feature, critical for dis
tinguishing heading from booting, may be obscured in images taken at 
certain angles or lighting conditions. In agronomic terms, the proper 
identification of heading is crucial as it marks the transition to 

reproductive development, influencing grain yield potential and man
agement interventions.

Compared to the apple datasets in Liu et al.(2023), the indistinct 
morphological changes between rice growth stages—especially those 
involving dynamic vegetative to reproductive transitions—make rice 
classification more complex. The nuanced features in rice, such as tiller 
angle and panicle emergence, require more sophisticated feature 
extraction methods for accurate growth stage identification. While Tan 
et al. (2023) achieved high accuracy by focusing on just three stages 
(booting, heading, and filling), their reduced scope simplifies the task 
compared to this study, which covers a broader range of stages with 
more complex variations. The present study highlights the need for 
enhanced feature extraction and more balanced datasets to improve 
accuracy in complex growth stages critical for agronomic 
decision-making. Our findings suggest that improving classification ac
curacy for complex stages like BBCH 3 and BBCH 5 may involve 
addressing sample imbalance, enhancing feature extraction for subtle 
morphological changes, and expanding the dataset for underrepresented 
stages. Agronomically, this would allow for more precise monitoring 
and decision-making during critical growth periods, leading to better 
crop management and yield optimization. Additionally, while the pro
posed method outperforms others across various growth stages, its ac
curacy in identifying BBCH 3 and BBCH 5 remains relatively lower 
compared to other stages, indicating the need for further improvements.

Overall, while CO-ResNetRS50-SSL provides strong performance 
across most stages, challenges remain in distinguishing closely related 
growth phases such as BBCH 3 and BBCH 5. Future refinements—like 
improving sample balance, augmenting features for subtle morpholog
ical changes, and increasing dataset diversity—could further enhance 
classification accuracy in these complex scenarios. In practical terms, 
more reliable predictions of critical stages would allow farmers and 
agronomists to optimize their interventions, ultimately leading to 
improved crop management and higher yields.

4.4. Limitations

Despite the superiority achieved by our method, there are still two 
limitations to address in the future work. First, in our SSL based 
approach, we applied a CT to filter out low-confidence pseudo-labeled 
images (PLIMs), which might not be sufficient to filter out noisy labels 
and ensure a balanced distribution of PLIMs across different growth 
stages. Therefore, it could struggle to completely mitigate the impact of 
noisy labels. This limitation may exacerbate the issue of BBCH 5 having 
fewer samples than other growth stages, reducing the model’s ability to 
generalize to under-represented categories. Second, to balance compu
tational efficiency, we selected a resolution of 224 × 224. While this 
resolution effectively reduced the computational cost, it may have 
resulted in the loss of some fine details compared to the higher resolu
tion of 512 × 512, potentially affecting the model’s ability to capture 
subtle features.

To address these issues, future research could explore refining both 
the pseudo-labeling strategy and the image resolution methodology. 
First, we will explore advanced confidence thresholding techni
ques—such as adaptive thresholding and uncertainty estimation—to 
better filter out low-confidence pseudo-labeled images and mitigate the 
impact of noisy labels. It could ensure a more balanced distribution of 
pseudo-labeled samples across all growth stages, particularly addressing 
the under-representation of BBCH 5. Second, we intend to investigate 
multi-scale or efficient high-resolution processing strategies that allow 
the use of higher resolution inputs (e.g., 512 ×512) without significantly 
increasing computational costs. Such strategies may enable the model to 
capture finer details and subtle features, ultimately enhancing its 
generalization capability under complex field conditions.
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5. Conclusions

This study proposes CO-ResNetRS50-SSL, a semi-supervised learning 
model based on the improved ResNetRS architecture for rice growth 
stage classification. By incorporating SSL for utilizing unlabeled data, 
the model improves generalization ability and reduces dependency on 
large scale labeled data. Meanwhile, the integration of the CA and 
ODConv Modules enhances the model’s feature extraction and target 
perception capabilities. Experimental results show that the CO- 
ResNetRS50-SSL model achieves a classification accuracy of 90.38 %, 
surpassing other mainstream models. Due to the improved accuracy and 
generalization as well as the reduced need for manual labeling by uti
lizing unlabeled data, this method is particularly suitable for data-scarce 
and cost-sensitive fields, such as agriculture. In rice field monitoring, the 
SSL-based automated system can reduce time and financial costs, 
allowing for rapid assessment of crop growth stages and optimization of 
management practices. Furthermore, integrating this model into smart 
agricultural robots allows for automated crop management, enhancing 
operational efficiency and practical applicability. While significant re
sults have been achieved, future work will focus on exploring adaptive 
thresholding to better filter pseudo-labeled images and investigate 
efficient multi-scale high-resolution processing methods to capture fine 
details while maintaining computational efficiency.

CRediT authorship contribution statement

Liang Zeyun: Writing – review & editing, Visualization, Validation, 
Software. Yang Guangpeng: Writing – original draft, Software, 
Conceptualization. Yan Changqing: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Supervision, Re
sources, Methodology, Conceptualization. Zhao Gang: Writing – review 
& editing, Writing – original draft, Supervision, Resources, Project 
administration, Methodology, Funding acquisition, Conceptualization. 
Yu Qiang: Writing – review & editing, Conceptualization. Srivastava 
Amit Kumar: Writing – review & editing, Validation. Wu Genghong: 
Writing – review & editing, Validation. Cheng Han: Writing – review & 
editing, Validation, Software.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work is supported by the Shaanxi Key R&D Program Project 
(grant no. 2023-ZDLNY-64) and the MOE (Ministry of Education in 
China) Liberal Arts and Social Sciences Foundation of China (Grant No. 
23YJC790122).

Data availability

Data will be made available on request.

References

Aich, S., Josuttes, A., Ovsyannikov, I., Strueby, K., Ahmed, I., Duddu, H.S., Pozniak, C., 
Shirtliffe, S., Stavness, I., 2018. Deepwheat: Estimating Phenotypic Traits from Crop 
Images with Deep Learning. Presented at the 2018 IEEE Winter conference on 
applications of computer vision (WACV), IEEE, pp. 323–332. 〈https://doi. 
org/10.1109/WACV.2018.00042〉.

Alabsi, B., Anbar, M., Rihan, S., 2023. CNN-CNN: Dual Convolutional Neural Network 
Approach for Feature Selection and Attack Detection on Internet of Things Networks. 
Sensors 23, 6507. https://doi.org/10.3390/s23146507.

Amorim, W.P., Tetila, E.C., Pistori, H., Papa, J.P., 2019. Semi-Supervised Learning with 
Convolutional Neural Networks for UAV Images Automatic Recognition. Comput. 
Electron. Agric. 164, 104932. https://doi.org/10.1016/j.compag.2019.104932.
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