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SCIENCE FOR SOCIETY The stability of the global food system is increasingly challenged as climate extremes 

driven by natural climate variability become more frequent and more likely to disrupt multiple major crop-pro

ducing regions at the same time. The Indian Ocean Dipole (IOD), El Niño-Southern Oscillation (ENSO), and North 

Atlantic Oscillation (NAO) are the main climate drivers that may influence regional weather conditions and further 

modulate crop productivity. However, it is still unclear how climate drivers have influenced crop productivity in 

historical periods and how their impacts may shift in the future. In this study, we integrate artificial intelligence 

algorithms with a large ensemble of process-based crop and climate models to evaluate the changing impact of 

climate variability on global crop productivity under greenhouse warming. We find that the NAO is projected to 

have a stronger influence on crop yields in the Northern Hemisphere and the ENSO increases dominance in the 

Southern Hemisphere under global warming. These shifting patterns are expected to expose an additional 

5.1%–12% of global croplands to climate-oscillation-related disruptions. In addition, strong negative phases 

of NAO and El Niño events (strong positive phase of ENSO) are likely to cause simultaneous yield losses across 

multiple key food-producing regions. In contrast, their opposite phases do not demonstrate similar benefits, 

revealing an asymmetric influence in how these events affect food production and potentially heightening risks 

to global food security. Understanding these shifting climate signals is critical for building a more resilient food 

system. Our findings can help farmers and policymakers enhance early-warning systems and develop targeted 

adaptation strategies to increase food-system resilience and ensure the stability of global food-supply chains. 

One Earth 8, 101318, June 20, 2025 © 2025 Elsevier Inc. 1 
All rights are reserved, including those for text and data mining, AI training, and similar technologies.
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SUMMARY

Enhancing food-system resilience is critical in the face of increasing climate variability that threatens food 

security. Large-scale climate oscillations are key drivers of climate conditions that disrupt agricultural pro

ductivity. However, how such effects are shifting under greenhouse warming remains unclear. Here, we inte

grate machine learning with process-based crop models to quantify changes in climate-oscillation-driven 

yield variability under warming scenarios. We find that climate change increases the dominance of the North 

Atlantic Oscillation (NAO) in the Northern Hemisphere and the El Niño-Southern Oscillation (ENSO) in the 

Southern Hemisphere, exposing an additional 5.1%–12% of global croplands to climate oscillation shocks. 

Negative NAO and El Niño events are projected to cause simultaneous yield losses of 2.0%–8.4% across mul

tiple breadbaskets, while opposite phases provide weaker benefits, indicating asymmetric impacts and 

greater food security risks. We highlight the importance of incorporating shifting teleconnections into 

early-warning systems and targeted adaptation strategies to enhance global food-system resilience.

INTRODUCTION

Food production and security have become critical global is

sues, further complicated by the shift toward globalization and 

interdependence in contemporary food systems.1–3 Climate 

variability and warming (often leading to extreme drought, flood

ing, and heat-wave stress) likely impact the food supply and 

threaten food security and market stability, particularly in regions 

with limited adaptive capacity.4–6 Such risks might be exposed 

simultaneously to more than one breadbasket, particularly in 

recent decades,7 exacerbating the balance between supply 

and demand.8,9 Given the increasing risk of crop failures and 

the ever-growing demand for food, identifying the drivers behind 

simultaneous shocks to food production is essential for devel

oping mitigation strategies toward the zero-hunger target of 

the Sustainable Development Goals (SDG 2).10

Large-scale climate drivers, such as the El Niño-Southern 

Oscillation (ENSO), contain more information compared to local 

individual climate variables (e.g., temperature or precipitation) 

due to their interconnected systems that influence weather pat

terns on a global scale.11–14 For instance, an El Niño event typi

cally brings drought to Australia, Indonesia, and neighboring 

countries.15 These drivers also influence crop yields through im

mediate to lagged impacts by modulating regional climate con

ditions,16–18 thus providing a longer lead time and broader 

outlook than short-term weather predictions.19 Consequently, 

there is a need to identify the signals leading to global food pro

duction losses in food systems’ early warnings.20,21 However, in 

regions like Australia, the dominant climate drivers influencing 

crop yields, for instance, have shifted from the ENSO to the In

dian Ocean Dipole (IOD) over the past century, likely due to the 

influence of climate warming on regional sea surface tempera

ture (SST) and sea-level pressure (SLP).17,22,23 Similarly, the 

North Atlantic Oscillation (NAO) influences temperature, precip

itation, and grain yields in the southeastern United States24 and 

is expected to have an increasing correlation with precipitation in 

northern Europe in future scenarios.25 In addition, the ENSO vari

ability is projected to increase under greenhouse warming,11,26

potentially increasing the risk of both El Niño and La Niña events. 

This increase can impact regional dry-wet cycles, leading to 

more frequent drought and flood events associated with the 

ENSO due to the greater frequency and intensity of these 

events.27–29 Evaluating how such shifts in climate drivers will in

crease the risk of simultaneous shocks to different breadbaskets 

under greenhouse warming is an important issue for global food 

security.

Regions negatively affected by climate shocks might find 

some relief through compensatory approaches from areas expe

riencing positive impacts through food trade.16,30 However, 

many of these studies rely on traditional linear models to esti

mate crop yield changes due to climate oscillations,16,31 which 

cannot capture the potential nonlinear responses or the potential 

shifts with climate change. For instance, extreme rainfall inten

sifies during El Niño and La Niña, with El Niño events amplifying 

intensity in East Asia.32 The asymmetric responses of crop yields 

to climate variations might be underestimated when relying on 

traditional linear regression analyses. This oversight could inad

vertently exacerbate risks to food-supply chains in the face of 

climate shocks, even with mitigation efforts through food trade. 

Therefore, quantifying the influence of climate drivers on crop 

yields under global warming, including both linear and nonlinear 

relationships, is crucial for farmers and policymakers to develop 

effective and resilient adaptation strategies.

Wheat (Triticum sp. L.), maize (Zea mays L.), rice (Oryza sativa 

L.), and soybean (Glycine max L. Merr.) are the four major crops 

globally, providing around two-thirds of human caloric intake.33

Recent studies have shown that large-scale atmospheric circu

lations, including the IOD, ENSO, and NAO, significantly affect 

local climate conditions and crop production.16,20,31 However, 

how climate drivers affect crop yields and their potential shifts 

under greenhouse gas warming have not yet been comprehen

sively assessed using model-based analysis.

Here, we employ the latest process-based global gridded crop 

model intercomparison (GGCMI34) driven by CMIP6 global 

climate models (GCMs) with a random forest (RF) approach to 

link climate oscillations (including IOD, ENSO, and NAO) to 

crop yield. We find that the dominant climate drivers of crop 

yields are projected to shift under greenhouse warming, with 

clear changes in regional influence. For instance, the IOD is ex

pected to exert a more independent influence as its historical 

linkage with the ENSO weakens. Meanwhile, the NAO becomes 

increasingly dominant in the Northern Hemisphere, and the 

ENSO strengthens its impact in the Southern Hemisphere. 

Strong negative NAO (nNAO) phases are projected to elevate 
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the risk of yield losses across northern breadbaskets, whereas El 

Niño events increasingly threaten crop production in much of the 

Southern Hemisphere. However, the modeling framework in this 

study still has uncertainty, driven by differences among GCMs, 

GGCMs, and their interactions, with region-specific variation in 

the dominant sources of uncertainty. This study provides new in

sights into how climate oscillations modulate crop yields under 

climate change, identifying key signals that may trigger simulta

neous yield losses across global breadbaskets. These findings 

can support farmers and policymakers in enhancing early-warn

ing systems and developing targeted adaptation strategies to 

build a more resilient and stable food system.

RESULTS AND DISCUSSION

Changes in crop yield, standard deviations, and areas 

affected by climate drivers

The ensemble of 12 GGCMs, driven by five different GCMs, re

vealed distinct impacts of climate change on crop yields. Climate 

change negatively impacts maize yield and positively impacts 

wheat yield (Figure 1A), with no significant negative impact on 

soybean or rice yields in most regions. However, there is a large 

positive impact on soybean yields in several regions, such as 

southeast South America, South Africa, and Central Europe 

(Figure S2). The magnitude of soybean and rice yield changes 

is not as large as that of wheat and maize, likely due to the large 

uncertainty in yield projections for soybean and rice.34 In addi

tion, irrigation may help mitigate the impacts of climate 

change,35 such as increasing the resilience of rice to drought.36

Although CO2 fertilization can benefit C3 crops like soybean, 

rice, and wheat, leading to more optimistic projections for these 

crop yields, the extent of this benefit varies depending on how 

crop models represent CO2 fertilization processes.34,37 Crop 

yields are simulated using different crop models driven solely 

by climate data, without considering the effects of technological 

advancements or management practices. This allows us to 

isolate the impact of climate factors on crop yields. The vari

ability of crop yields, as measured by the standard deviation 

(SD), is projected to be higher under more severe emissions sce

narios (SSP585) across most regions (Figures 1 and S2).

We derived the percentage of areas where crop yields signifi

cantly correlate with climate drivers across five GCMs, including 

the IOD, ENSO, and NAO. We found that for all crop types, areas 

significantly impacted by drivers show a large increase 

(Figures 1C and S2C). The impacted maize area increased by 

7.7% (from 36.0%–37.4% to 40.6%–46.1%), 3.7% (from 

45.1%–50.9% to 45.6%–60.5%), and 18.1% (from 33.8%– 

36.7% to 44.2%–71.5%) for the IOD, ENSO, and NAO, respec

tively; wheat areas increased by 5.6% (from 33.8%–36.0% to 

38.7%–43.1%), 2.5% (from 42.9%–47.5% to 47.0%–47.8%), 

and 10.3% (from 33.5%–38.4% to 37.5%–48.6%); soybean 

areas increased by 9.7% (from 33.8%–37.8% to 40.2%– 

51.4%), 12.1% (from 45.6%–51.5% to 49.9%–63.6%), and 

22.7% (from 34.6%–36.0% to 40.3%–66.2%); and rice areas 

increased by 2.1% (from 34.2%–48.3% to 36.4%–55.0%), 

9.9% (from 57.0%–59.2% to 53.8%–68.5%), and 8.5% (from 

36.3%–39.1% to 43.4%–56.2%). These increases suggest that 

more regions of crop yields are susceptible to those climate 

drivers in 2001–2099 compared to 1901–1999. Such changes 

may affect total productivity, with the extent of these variations 

depending on crop type and regional climate conditions. The 

future increase in variability compared to the historical period 

may be due to climate warming influencing the variability of 

climate oscillations,26,38,39 which leads to shifts in regional 

climate patterns and further affects crop yields, making them 

more sensitive to these drivers. It is worth noting that there may 

be some uncertainty due to internal climate variability and differ

ences in how the models represent atmospheric processes.40

Figure 1. Impact of climate change on crop yield 

(A) Multimodel ensemble of crop yield change for wheat and maize spanning historical (1901–1999) and future (2001–2099) periods under SSP585. 

(B) Standard deviations (SD) for maize and wheat yield during historical and future under SSP585. 

(C) Percentage area significantly influenced by climate drivers (IOD, ENSO, and NAO) for maize and wheat yields based on the five GCMs. Black line denotes 

median, and the boundaries of each box indicate the 25th and 75th percentiles; whiskers above and below each box mark 10th and 90th percentiles, respectively.
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The dominant climate drivers on crop yields

Our results demonstrate the dominant climate drivers in each 

grid and sub-region (Figure S1) during the two periods (historical 

and future) under the SSP585 scenario based on GFDL-ESM4 

(Figures 2A and 2C). We focus on two 99-year spans (1901– 

1999 and 2001–2099), since the longer period helps mitigate 

the effect of internal variability26 and more accurately captures 

the influence of climate oscillations on crop yields under climate 

change. Moreover, since we developed the RF model for each 

grid, a longer period with enough data can ensure the stability 

of our RF model. The chord diagrams illustrate the shift in 

dominant climate drivers affecting crop yields from the historical 

period (1901–1999) to the future period (2001–2099) (Figures 2B 

and 2D). For example, the link between ENSO_his and IOD_585 

indicates that areas where the ENSO was the dominant influence 

on crop yields during the historical period are projected to shift to 

being influenced by the IOD in the future. Additionally, the link 

between in.sig_his and ENSO_585 suggests that regions not 

significantly affected by climate drivers in the past are expected 

to be predominantly influenced by the ENSO in the future. The 

dominant climate drivers exhibit substantial change between 

the two periods. For instance, during the historical period, 

ENSO was the predominant factor influencing crop yields, ac

counting for 26.1%, 29.2%, 32.5%, and 43.8% of global maize, 

wheat, soybean, and rice areas, respectively (Figures 2 and S3). 

During future projections, the NAO is expected to substantially 

increase dominance of crop yield variance, even if it mainly oc

curs in the Northern Hemisphere. For example, the NAO’s influ

ence on maize yield has increased in northern China (CHN), the 

Midwest of the United States of America (USA), southern Europe 

(EU), and the Mideast (MIDE). Conversely, regions dominated by 

the ENSO, particularly in the Southern Hemisphere, are those 

such as northeastern Brazil (BRA), southwest South America 

(SSA), and southern Africa (SAF). Furthermore, the IOD is ex

pected to become the dominant climate driver influencing 

Australian wheat yield during the 21st century (2001–2099).

Across five GCMs, we find that areas significantly affected by 

climate variability increase by around 12%, 6.2%, 10%, and 

5.1% for maize, wheat, soybean, and rice under future periods 

compared with historical periods (Figures 2 and S3–S7). Most 

Figure 2. Dominant climatic drivers of global maize and wheat yield identified by the RF model based on GFDL-ESM4 

(A and C) (Top) Spatial distribution of dominant factors in historical (1900–1999) and future (2000–2099) periods under SSP585. (Bottom) Proportion of areas by 

the dominant factor in each sub-region. 

(B and D) Chord diagram shows the shift regions in the dominant factor from historical (1900–1999) to future (2000–2099) periods. Multi, the grid in which multiple 

indices significantly impact crop yield; in.sig, no significant indices. BRA, Brazil; CAM, Central America; CAN, Canada; CAS, Central Asia; CHN, China; EQAF, 

equatorial Africa; EU, Europe; KAJ, Korea and Japan; MIDE, Mideast; NAF, northern Africa; NSA, northern South America; OCE, Oceania; RUS, Russia; SAF, 

southern Africa; SAS, South Asia; SEAS, Southeast Asia; SSA, southwest South America; USA, United States of America.
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GCMs (except MPI-ESM1-2-HR) predict an increased impact of 

the NAO on crop yields in the Northern Hemisphere, particularly 

pronounced in the IPSL-CM6A-LR and UKESM1-0-LL models, 

characterized by high equilibrium climate sensitivity (ECS) and 

transient climate response (TCR) (Figures S4 and S7). Models 

with high ECS and TCR often predict stronger and more pro

nounced global warming with increasing CO2.41,42 The increase 

in SSTs may influence NAO variability, thereby expanding the 

areas impacted by climate variability. For instance, under green

house warming, SST changes can cause the NAO to shift from a 

positive to a negative phase in early winter, while reinforcing the 

nNAO anomaly in late winter.43 Such changes can significantly 

impact regional climate conditions in the Northern Hemi

sphere,44,45 especially as projected by high ECS and TCR 

GCMs under high emission scenarios.41 For example, a strong 

negative phase of the NAO is often associated with colder, 

wetter conditions in northern EU, while southern EU may experi

ence warmer and wetter conditions.46,47 These climate condi

tions, driven by an extreme nNAO phase, are likely to impact 

crop yields. In the Southern Hemisphere, the ENSO is expected 

to intensify its impact on crop yields in South America and Africa, 

primarily due to increased ENSO-related hydroclimate variability 

and the frequency and severity of drought.27,48 In Australia, while 

the ENSO has been the main factor affecting crop yields during 

historical periods, the IOD is expected to play a more dominant 

role in the future. This is in line with findings from Feng et al.17 that 

global warming increases the frequency of extreme positive IOD 

(pIOD) events,49 and the pIOD phase often brings heat and 

drought in Australia.50,51 Generally, most GCMs project an in

crease in climate drivers’ influence on future crop yields. Only 

the MRI-ESM2-0 model shows a decrease in areas where 

climate drivers significantly impact crop yields. This could be 

attributed to this particular GCM projecting relatively higher 

crop yields than others,34 suggesting that the climate conditions 

it predicts may be more favorable for crop growth, with a rela

tively low frequency of negative impacts from extreme climate 

oscillation events. Thus, with no significant impact from climate 

drivers, this model shows relatively low importance as detected 

by the RF model. However, this does not necessarily mean that 

the influence of climate modes remains consistently low; it may 

indicate that the model’s projected conditions make crops less 

sensitive to these drivers, thereby limiting their influence.

Crop yield response to climate drivers

Crop yield perturbations under strong oscillation phases during 

historical and future periods have been quantified using partial 

dependence plots (PDPs) based on multimodel ensembles (12 

GGCMs and 5 GCMs) under the SSP585 scenario. The spatial 

patterns of yield change during strong phases of the IOD, 

ENSO, or NAO can pinpoint global hotspots particularly vulner

able to climate oscillations (Figures 3 and S8–S10). Generally, 

crop yield changes are expected to become more pronounced, 

particularly under strong phases of ENSO and NAO, compared 

with normal phases. For example, strong negative ENSO phases 

(La Niña) are likely to induce more pronounced losses in maize 

yields in the USA (0.7%–7.3%), EU (1.9%–4.6%), SSA (1.3%– 

1.5%), and MIDE (4.6%–8.2%) (Figures 4 and S11), even though 

the impact may not be statistically significant in some regions. 

Conversely, it may improve the maize yield in Oceania (OCE) 

(3.3%–9.6%), Southeast Asia (SEAS) (1.7%–5%), BRA (1.6%– 

2.8%), and SAF (2.2%–4.5%) (Figure 4), potentially buffering 

the negative impact through the food trade. These results are 

similar to previous studies in most regions,19,20,52 though there 

are some differences in the western part of the EU under both 

El Niño and La Niña events,19 as well as different impacts on 

maize yields in the EU under La Niña events.52 These differences 

may be attributed to variations in data sources, time periods, and 

methodologies, as our analysis is based on GCM historical data 

from 1900 to 1999. However, these relationships may not always 

remain stationary. For example, the ENSO had a limited influ

ence on maize yields in northern South America (NSA) during 

the historical period, but its impact may increase significantly 

in the future, leading to substantial yield losses under El Niño 

events (Figure 4). El Niño could also cause yield losses across 

multiple regions, with potential reductions of 3.9%–7.7% for 

maize, 3.1%–8.4% for wheat, 2.8%–6.7% for soybeans, and 

2.1%–3.7% for rice. In SEAS, both the ENSO and the IOD will 

have an increasing influence on maize yields from 2001 to 

2099, but the ENSO will remain the dominant driver, with its ef

fects intensifying further (Figure 4). Maize yields in SEAS are 

likely to decrease during El Niño years, consistent with previous 

studies,19 and the ENSO’s influence in this region may be further 

amplified by climate change.53,54 Furthermore, global warming is 

likely to increase the frequency of El Niño events, further ampli

fying the risk of yield losses.55,56

The strong positive phases of the IOD (pIOD) are projected to 

negatively affect crop yields in the Southern Hemisphere, partic

ularly wheat, soybean, and rice. Although the spatial patterns of 

yield changes demonstrate similarity to ENSO-induced yield 

change during the historical period (Figures 3 and S8–S10), 

they exhibit variation under future climate changes (Figures 3

and S8–S10). As El Niño develops, the associated weakening 

of the Walker Circulation can reduce upwelling in the eastern In

dian Ocean, leading to warmer SSTs in the western part and 

cooler conditions in the eastern part.57,58 Consequently, El 

Niño events and pIOD have often been interconnected, likely ex

erting similar impact patterns on crops during historical periods 

(Figure 3). However, their influence differs significantly in future 

periods (Figure 3), possibly due to a weakening ENSO-IOD 

connection.59 For a typical instance, in 2019, a very weak El 

Niño coupled with a strong pIOD led to dry and hot weather in 

eastern Australia, culminating in devastating bushfires.60,61

This indicates that in Australia, the impact of pIOD is not always 

similar to that of El Niño. Therefore, under climate change, the 

impacts of the ENSO and IOD on crop yields may increasingly 

diverge, as seen in the different yield changes under extreme 

IOD and ENSO events for maize (Figures 3 and 4). Furthermore, 

although the IOD-induced yield losses are less than those 

caused by the ENSO, extreme IOD events are projected to in

crease under global warming,49 indicating a still large impact.

In historical periods, the NAO has been linked to yield losses in 

the USA, Russia (RUS), and EU during extreme nNAO for maize, 

wheat, and soybean, aligning with findings from previous 

studies.16,20,52 In future periods, climate change is expected to 

amplify the NAO’s influence on crop yields in the Northern Hemi

sphere (Figure 3). We show that nNAO increases the risk of 

simultaneous crop yield shocks across different breadbaskets 

(Figures 3 and S8–S11) during the future period. For instance, 
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extreme nNAO events could decrease maize production by 

0.01%–13.2% in the USA, 0.4%–7.5% in EU, 0.18%–15.2% in 

Central Asia (CAS), 0.01%–11.4% in CHN, and 2.8%–7.7% in 

South Asia (SAS) (Figure 4). Generally, different crops in the 

Northern Hemisphere are also expected to experience different 

degrees of decline under extreme nNAO events (Figures S11– 

S13), with potential decreases of 4.1%–6.9% for maize, 2.8%– 

6.9% for wheat, 2.7%–6.3% for soybean, and 2%–9.9% for 

rice across different affected regions. In regions such as CAS, 

northern Africa (NAF), and CHN, where the NAO historically 

had little impact on yields, its influence is expected to increase. 

This shift is perhaps because greenhouse warming amplifies 

ocean heat transport and alters atmospheric circulation, thereby 

increasing the NAO’s dominance in these regions.44 Several 

studies also highlight the relationship between the NAO and 

extreme climate events in the Northern Hemisphere.25,62,63

Despite potential yield benefits during positive phases of NAO 

(pNAO), yield losses may be outweighed during nNAO phases 

(Figures 4 and S11–S13). Furthermore, our study reveals signifi

cant uncertainties in NAO-induced yield changes due to differ

ences in physical processes among GCMs.64

Our study highlights the asymmetric effects of climate drivers 

on crop yield, indicating net losses during intense climate oscil

lation phases. For example, El Niño positively affects one of the 

world’s major food baskets in southern South America (such as 

southern Brazil, Argentina, Uruguay, and Paraguay) while nega

tively impacting the northern part of South America. La Niña 

generally has the opposite effect (Figures 3 and S8–S10). 

However, the negative impacts from climate oscillations are 

increasing and are not fully offset by the positive effects 

Figure 3. Maize yield changes under strong phases of the IOD, ENSO and NAO 

Maize yield changes were estimated using partial dependence plots from a random forest model, based on a multimodel ensemble (12 GGCMs and 5 GCMs) 

under the SSP585 scenario, during both historical (1901–1999) and future (2001–2099) periods. Neg_Historical represents the crop yield change during a strong 

negative phase (10th percentile) compared with a normal phase (50th percentile) in the historical period. Neg_SSP585 denotes the crop yield change during a 

strong negative phase (10th percentile) compared with a normal phase (50th percentile) in the future period under SSP585. Pos_Historical represents the crop 

yield change during a strong positive phase (90th percentile) compared with a normal phase (50th percentile) in the historical period. Pos_SSP585 represents the 

crop yield change during a strong positive phase (90th percentile) compared with a normal phase (50th percentile) in the future period under SSP585. The other 

crops (wheat, soybean, and rice) are shown in Figures S8–S11.
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associated with climate change. Recent trends also suggest 

prolonged La Niña events,65,66 which increase the risk of 

droughts and yield losses in southern South America. Moreover, 

extreme flood events are associated with the ENSO, such as the 

severe floods in southern Brazil in 2024 during an El Niño year67

and flooding in Colombia during a La Niña year,68 which have the 

potential to reduce crop yields.6,69,70 However, current crop 

models have not fully captured these extreme wet conditions,6,71

resulting in overestimating yields under extreme wet conditions 

induced by climate oscillation. Consequently, this may lead to 

underestimating the risks of crop yield losses during extreme 

wet years driven by climate oscillations. Such risks could pose 

additional challenges to food security and hinder the achieve

ment of SDG 2.

We employ the RF model to quantify crop yield changes during 

strong climate oscillation phases, effectively capturing potential 

nonlinear relationships. However, this method may only partially 

demonstrate the spatial patterns of crop yield responses during 

transitional periods between the positive and the negative strong 

phases of the oscillations. Thus, we used a multivariate dynamic 

linear model (DLM) to analyze the sensitivity of crop yields to 

climate drivers. The results show that the sensitivity of crop yield 

to climate drivers is increasing in most regions (Figures S11 and 

S12), especially in those with a higher SD of crop yield (see 

supplemental methods). Overall, this study identified two climate 

signals likely to amplify the risk of simultaneous crop production 

failure: nNAO and El Niño.

Uncertainty analysis

The impact of climate drivers on crop yields under climate 

change was evaluated based on a large ensemble of process- 

based crop and climate models. However, we understand that 

there is a large uncertainty in such analysis sourced from 

GGCM, SSP, and GCM, which still needs to be fully quantified. 

The studies for analyzing sources of uncertainty in crop yield 

change projections have been well documented from site to 

global scales,37,71–75 and a package of approaches in constrain

ing uncertainty has been developed through different path

ways.76,77 However, in estimating the impacts of climate drivers, 

the sources of uncertainty may vary from those in previous 

studies due to differences in modeling approaches. Identifying 

the sources of uncertainty in the impact of climate drivers on 

crop yields is essential for better understanding climate shock 

assessments on breadbaskets under greenhouse warming. 

Furthermore, it can provide new insights and pathways to reduce 

the overall uncertainty in climate change impact studies and 

improve the precision and reliability of seasonal crop yield 

forecasts.

Figure 4. Regional maize yield changes (%) under strong phases of climate drivers 

Boxplots denote maize production simulated by 12 GGCMs and 5 GCMs. The black line denotes the median, the boundaries of each box indicate the 25th and 

75th percentiles, and whiskers above and below each box mark the 10th and 90th percentiles, respectively. Pos, the maize production change during a strong 

positive phase (90th percentile) compared with a normal phase (50th percentile) in the historical period; Neg, the crop yield change during a strong negative phase 

(10th percentile) compared with a normal phase (50th percentile) in the historical period. BRA, Brazil; CAM, Central America; CAN, Canada; CAS, Central Asia; 

CHN, China; EQAF, equatorial Africa; EU, Europe; KAJ, Korea and Japan; MIDE, Mideast; NAF, northern Africa; NSA, northern South America; OCE, Oceania; 

RUS, Russia; SAF, southern Africa; SAS, South Asia; SEAS, Southeast Asia; SSA, southwest South America; USA, United States of America.
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In this study, we employed an analysis of variation (ANOVA) 

approach to quantify the spatial patterns of relative contributions 

from various uncertainty sources (see supplemental methods). 

The results revealed that uncertainties from GCMs and SSPs are 

larger than those induced by GGCMs. This raises the question of 

why the dominant source of uncertainty is the GCM and SSP rather 

than the crop model compared with previous studies.34,37,78 A po

tential explanation is the differing modeling chains employed. Crop 

yield projections rely on crop models driven by a GCM. Because of 

the complexity of biological processes and the interactions be

tween crop growth and environmental variables, the crop model 

may induce more uncertainties.73,74 However, in assessing the 

impact of climate drivers on crop yield, the representation of these 

climate drivers (e.g., IOD, ENSO, and NAO) in different GCMs be

comes important and may have different impacts on local weather 

conditions. Consequently, the complex simulations provided by 

GCMs can bring additional uncertainties.53,64,79 Furthermore, we 

found that regions where uncertainties are mainly sourced from 

the GCM are more likely vulnerable to climate drivers (Figures 5

and S18). This is mainly because such regions are susceptible to 

climate variability and extreme events induced by climate drivers. 

For instance, in the Australian wheat belt, GCM is the dominant 

source of uncertainty in analyzing the IOD’s impact on crop yields 

(Figure S18), likely because the wheat yields in the Mediterranean 

climate are more likely affected by natural variability,73 and the IOD 

also shows an increasing dominance in influencing the Australian 

wheat belt.17 Such methods provide new insights into the impact 

of climate variability drivers on crop yields, allowing us to identify 

regions at high risk of being impacted by climate oscillations.

Implications for global food security

Our study has wide-ranging implications for global food security. 

Climate teleconnections significantly influence regional climate 

conditions, which in turn can impact local food production,19 eco

systems,14,80 and socioeconomic factors.81,82 The sensitivity of 

these connections is more significant under future climate 

change.27 Given that climate drivers such as the ENSO influence 

various climate factors, they offer more harmonious insight 

compared with singular climatic indicators (e.g., temperature, 

radiation, or precipitation).13,15 In addition, many studies still 

mostly focus on the impact of the ENSO,21,27 which potentially 

overlooks crucial information and results in insufficient 

Figure 5. Source of uncertainty in the sensitivity of maize and wheat yields to climate drivers (IOD, ENSO, and NAO) under climate change 

(A) Spatial pattern illustrating the fraction of uncertainty attributable to GCM, GGCM, and SSP. 

(B) Spatially averaged contributions from each source of uncertainty, along with their pairwise and triple interactions, relative to the total ensemble uncertainty. 

The inner circle represents the uncertainty share for maize and the outer ring represents the uncertainty share for wheat.
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preparedness for adverse agricultural climate conditions. Our 

study, integrating machine learning techniques with multimodel 

ensembles, provides a comprehensive insight into how historical 

teleconnections of climate drivers have influenced global crop 

production and anticipates their evolution in a future warmer 

climate. For instance, the NAO increases dominance in the North

ern Hemisphere (Figure 2), and the IOD has a more independent 

effect on crop yield in OCE under future warming (Figures 3 and 

4). Here, we identify climate signals that could lead to high risks 

of simultaneous shocks across multiple breadbaskets. As the 

food system becomes increasingly globalized, localized shocks 

can potentially affect vulnerable people in geographically distinct 

zones through the food trade network.83,84

Our results highlight the importance of considering climate os

cillations in proactively enhancing the resilience of food systems. 

We identified potential shifts in the impact of climate oscillations 

due to global warming, a trend that warrants significant attention 

given the ongoing rise in global temperatures. For example, we 

found that the IOD will increasingly dominate the influence on 

Australian wheat yields compared to the historical period, 

consistent with Feng et al.17 This highlights the need to dynam

ically consider dominant climate drivers to more accurately proj

ect crop yield changes resulting from climate oscillation shocks, 

especially under warming conditions. Thus, our study suggests 

improving the robustness of crop yield forecasting systems by 

accounting for the potential shift in dominant climate drivers. 

Robust projections can help policymakers and stakeholders pre

pare for potential coming risks by building more resilient food 

systems that can better withstand future climate shocks.85 For 

instance, investments in infrastructure to enhance resilience to 

projected changes, improvements in food stock technology 

and capacity to buffer potential shocks, and the refinement of 

trade policies based on accurate climate oscillation signals will 

be crucial in mitigating the negative impacts of future climate 

variability on food production.30,86–88 We also found that in re

gions such as Korea and Japan (KAJ), northern CHN, and Central 

America (CAM), crop yields for maize, wheat, and rice are pro

jected to decrease under both El Niño and La Niña events. 

Regarding the NAO, our findings indicate that the NAO increases 

crop yield losses across most of the Northern Hemisphere, with 

these losses outweighing any yield benefits observed under 

pNAO phases. These nonlinear and asymmetric effects add 

additional risks under climate change, which are potentially 

underestimated by simple linear models.65,82 This may exacer

bate the stability of food-supply chains and pose additional 

challenges to global food security. More importantly, countries 

experience and respond to food market volatility differently, de

pending on their exposure to market shocks and their capacity to 

adapt and recover.86 For example, limited supply flexibility and 

slow dietary changes in developing countries increase vulnera

bility to food shortages and price spikes.89 Therefore, it is essen

tial to implement a tailored strategy that accounts for climate 

teleconnections, particularly in countries or regions with low re

silience to climate change.

Limitations and future framework

There are some limitations in this study. First, although our anal

ysis used multimodel ensembles, it still has large uncertainties 

(supplemental methods). The projections of crop yield changes 

are subject to uncertainties arising from model structure, param

eters, GCMs, soil data, and other factors, which pose challenges 

to accurate predictions.34,90 The ENSO, IOD, and NAO projec

tions are also highly uncertain due to complex and multidirec

tional feedback, internal variability, and nonlinear dynamics.91,92

For instance, small perturbations in initial conditions can lead to 

large variability, highlighting the complexity and challenges in 

projecting ENSO.92 Similarly, NAO projections are uncertain 

due to the representation of physical processes and internal vari

ability.64 Moreover, projections of climate drivers are further 

complicated by anthropogenic influences, adding additional un

certainty to climate oscillation projections.64,93 However, we did 

not constrain the uncertainties associated with climate drivers or 

crop yield projections in this study. Several methods could 

address these limitations. For example, Wang et al.76 constrain 

the gridded global crop models’ response to warmer tempera

tures based on field data with an emergent-constraint method. 

Projections of climate drivers based on GCMs often exhibit large 

biases. Tang et al.94 identified systematic biases in 13 models 

simulating historical climate and presented more reliable 

extreme El Niño frequency projections by removing such biases. 

Therefore, applying systematic bias corrections in climate 

models may help provide more robust projections. In addition, 

since climate drivers have different patterns in disrupting the 

global crop yield, integrating empirical crop yield responses to 

climate drivers to better harmonize the crop and climate could 

be a useful approach to reduce the uncertainty in crop yield pre

dictions. Second, while the study highlights the importance of 

understanding the impacts of climate drivers (ENSO, IOD, and 

NAO) on food baskets, future research could explore dynamic 

farming practices and adaptation strategies to enhance resil

ience.17 Approaches such as adaptation of crop calendars,95

changes in irrigation,35 and optimization of fertilizer use,96 which 

could buffer the negative shock of strong climate oscillations, 

could be considered. These adaptions could influence the rela

tionship between climate drivers and crop yield. Future work 

will incorporate different climate change adaptation strategies 

to meet more severe and complete knowledge needs. Third, 

the study primarily focuses on the relationship between climate 

drivers and crop yields without delving into potential trade 

policy strategies. Understanding how climate oscillations could 

impact international food trade and exploring potential trade 

policy responses could significantly contribute to enhancing 

food security.97 Previous studies mainly explored the nexus be

tween climate change and international trade30,98,99 rather than 

linking climate oscillations to international trade. Understanding 

how climate oscillations potentially influence food trade could 

provide valuable insights for enhancing food security under 

climate change.

METHODS

Global crop yield simulation

Here, we leverage global process-based crop model simulations 

from AgMIP’s GGCMI project phase 3.34 We select 12 GGCMs 

(ACEA, CROVER, CYGMA1p74, DSSAT-Pythia, EPIC-IIASA, 

ISAM, LandscapeDNDC, LPJmL, pDSSAT, PEPIC, PROMET, 

and SIMPLACE-LINTUL5) to evaluate historical and future crop 

yields. The crop models are forced by five bias-adjusted and 
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downscaled daily CMIP6 GCMs (GFDL-ESM4, IPSL-CM6A-LR, 

MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM10-LL) from the 

ISIMIP framework. We considered two climate change scenarios 

in this study, SSP126 and SSP585, a high-mitigation and a high- 

emissions scenario. We focused on four major crops, including 

wheat, maize, rice, and soybeans, each under both rainfed and 

fully irrigated conditions. Irrigation is modeled by keeping soil 

moisture at field capacity to assess yield responses without wa

ter limits. We use constant crop areas in this simulation. Results 

are aggregated based on the current cropland distribution at a 

0.5◦ × 0.5◦ global grid.100 For more information on the modeling 

protocol, harmonization, and performance of the crop models, 

see Jägermeyr et al.34 Several studies have employed crop 

models like APSIM and LPJml to analyze the impact of climate 

drivers on crop yields.16,17 However, relying on a single model 

could lead to large uncertainties in crop yield simulations due 

to model structure and parameter variations.37 In our study, we 

utilize an ensemble of 12 GGCMs for a more rigorous and robust 

analysis.

Large-scale climate drivers

In this study, we employed three specific oscillation indices to 

capture the variability of key climate mode: the Dipole Mode Index 

(DMI) for the IOD, the Niño3.4 index for the ENSO, and the NAO 

index for the NAO itself. These three indices (ENSO, IOD, and 

NAO) were selected due to their known variability and potential 

impacts on global climate patterns, including extreme weather 

events that can significantly influence crop yields.31 Furthermore, 

these climate oscillations are known to have a significant impact 

on crop yields worldwide due to their influence on regional 

weather patterns and have been extensively used in previous 

studies to represent climate variability.16,20,31,52 Although other 

oscillation indices, such as the Pacific Decadal Oscillation 

(PDO), Atlantic Multidecadal Oscillation (AMO), and Arctic Oscilla

tion (AO), also likely impact global climate patterns and extreme 

weather events, potentially influencing crop yields,101,102 our 

study primarily focuses on interannual variability. The decadal na

ture of such oscillations, while important, was likely not suitable for 

this study due to its longer-term nature. Thus, the ENSO, IOD, and 

NAO are more directly relevant to and suitable for this study.

The Niño3.4 index was calculated by area-averaged SST 

within the Niño3.4 region (170◦W–120◦W and 5◦S–5◦N).103 The 

ENSO is one of the major climate drivers strongly associated 

with global climate conditions.104 Although the ENSO is formed 

in the tropical Pacific, the impact reach is global, including the 

social economy,12,81 ecosystems,53 and food production.19

Given that the ENSO has been shown to strongly affect global 

crop production,19,105,106 it is suitable to decouple food produc

tion from the ENSO under climate change. In this study, we used 

the Niño3.4 index to represent the ENSO. Many GCMs project 

stronger ENSO variability under greenhouse warming.11,26 Four 

of the five GCMs used in our study also show an increase in 

ENSO variance, excepting UKESM1-0-LL, which projects a 

decrease. This discrepancy highlights intermodel uncertainties, 

likely due to differences in internal feedback and dynamical pro

cesses, which may influence projected crop yield responses un

der future climate scenarios.

The IOD is expressed by an anomalous SST gradient among 

the western equatorial Indian Ocean (50◦E–70◦E and 10◦S– 

10◦N) and the southeastern equatorial Indian Ocean (90◦E– 

110◦E and 10◦S–0◦N).107 The IOD is also a major climate driver 

that influences the risk of extreme precipitation and drought.108

The strong IOD phases independently affect the regional climate 

condition, further influencing land photosynthesis51 and crop 

yields.17 For instance, pIOD-induced hot-dry weather largely 

contributed to bushfires during 2019–2020 in Australia.61

We use the NAO defined as the difference in area-averaged 

SLP between a southern region (90◦W–60◦E and 20◦N–55◦N) 

and a northern region (90◦W–60◦E and 55◦N–90◦N) in the North 

Atlantic, following previous studies.62,64 This method is less sen

sitive to differences in centers of action among observations and 

models than the station-based index.62,64 This study included 

the NAO as it particularly affects the climate in the Northern 

Hemisphere, such as EU and North America, which is often 

associated with extreme events (hot or wet), snow cover, and 

wind.109 Thus, the NAO further influences crop growth and 

yields, especially in the Northern Hemisphere.31,52

We used the five CMIP6 GCMs to project the variability of such 

three climate driver indices under SSP126 and SSP585. In this 

study, the strong oscillation phases were assumed when they 

were higher (or lower) than the 90th (10th) percentile during the 

two periods (historical, 1901–1999, and future, 2001–2099). To 

demonstrate the climate driver indices’ impact on crop yields 

in different sub-regions, we used 18 regions based on Tian 

et al.,110 including BRA, CAM, CAN (Canada), CAS, CHN, 

EQAF (equatorial Africa), EU, KAJ, MIDE, NAF, NSA, OCE, 

RUS, SAF, SAS, SEAS, SSA, and the USA (Figure S1). Although 

these regions may not be fully applicable across all climate 

drivers, defining regions based on a country list makes it easier 

to connect our findings with region-specific implications and pol

icy considerations.

Identifying the dominant climate drivers

We employed the RF model with three climate drivers (IOD, 

ENSO, and NAO) to identify the dominant climate drivers of 

different crop yields. The RF model is a popular algorithm based 

on multiple regression trees, which can be used to analyze the 

nonlinear response between different factors. In this study, the 

detrended growing season climate drivers (from five GCMs) 

and crop yields (12 GGCMs ensemble) were used in the RF 

model. The relative importance can be calculated using an out- 

of-bag (OOB) validation procedure from the fitted RF model. 

As there are large biases among GCMs in climate driver projec

tions64,79 and the potential offsetting of strong phases of climate 

drivers in different models, we present the shifting dominant fac

tors using individual GCMs rather than using a multimodel 

ensemble. We normalized the importance value to sum to 

100% for five GCMs under SSP585. The factor with maximum 

importance value was identified as a dominant factor in influ

encing crop yields. We identified the regions as having more 

than one dominant climate driver when the SD (between 

ENSO, NAO, and IOD) was lower than 10%. The importance 

value and significance level were calculated by the ‘‘rfPermute’’ 

package in R.111 In this study, we identified the significant areas 

where the p value is lower than 0.33. Recently, there has been 

guidance that utilizes the terms ‘‘very unlikely,’’ ‘‘unlikely,’’ and 

‘‘likely’’ for the 0%–10%, 0%–33%, and 66%–100% probability 

of the likelihood of the outcome, respectively.53,112 Our results 
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suggest that it is unlikely for strong oscillation phases to exhibit 

no Granger causality on crop yields, leading us to posit a causal 

linkage between climatic oscillations and agricultural productiv

ity in the identified regions.

Quantifying the climate drivers’ impacts on crop yields

The response functions of climate drivers and crop yields were 

demonstrated by calculating partial dependence using the RF 

model. The partial dependence plot can reveal whether the rela

tionships between climate drivers and crop yields are linear, 

nonlinear, or more complex.113 Here, we built an RF model for 

each grid using the ‘‘pdp’’ R package. We quantified the crop 

yield change between strong oscillation phases (negative, 

10th; positive, 90th) and neutral phases (50th) based on the par

tial dependence functions. It is worth noting that we used a multi

model ensemble to evaluate yield losses under the strong 

phases of climate drivers. In this condition, the signal of the 

climate oscillations is not offset, as the focus is specifically on 

yield changes during these conditions.

Map spatial smoothing processing

The map spatial smoothing processing consists of two main 

steps: first, we resampled it to a resolution five times finer; 

then, a 5 × 5 grid cell focal mean window aggregation was 

applied to smooth the map. It’s important to note that this 

smoothing is exclusively for visualization, and all analyses were 

conducted using the original, raw data.
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model input data are available from the ISIMIP repository (https://www. 
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asymmetric rainfall response to ENSO in East Asia. Clim. Dyn. 52, 

2303–2318. https://doi.org/10.1007/s00382-018-4253-9.

33. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., 

Yao, Y., Bassu, S., Ciais, P., et al. (2017). Temperature increase reduces 

global yields of major crops in four independent estimates. Proc. Natl. 

Acad. Sci. USA 114, 9326–9331. https://doi.org/10.1073/pnas. 

1701762114.
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